Vitamins History Purified diets of carbohydrate, protein, fat, minerals and water were not capable of normal growth "Accessory growth factors" • Casimir Funk, a Polish biochemist, isolated an antiberberi substance from rice polishings Named it vitamine An amine Vital for life

Vitamins

- Essential organic compounds required in very small amounts (micronutrients) involved in fundamental functions of the body
- Unrelated chemically
 - Not only amines so "e" was dropped

Vitamins

- Not metabolic fuels (like glucose or fatty acids) or structural nutrients (like amino acids)
- Regulators (catalysts) of reactions, some of which are involved in energy metabolism

Vitamins

- Organic molecules in food
- Required in small amounts
- Classified based on solubility
 - Fat soluble
 - Water soluble

Fat-soluble Vitamins

Vitamin	Chemical name
Α	Retinol
D_2	Ergocalciferol
D_3	Cholecalciferol
E	Tocopherol
K	Phylloquinone

Water-soluble Vitamins

Vitamin	Chemical name
B complex	
B ₁	Thiamin
B ₂	Riboflavin
B ₃	Nicotinamide (niacin)
B ₅	Pantothenic acid
B ₆	Pyridoxine
B ₇	Biotin
	Folacin (folic acid)
	Choline
B ₁₂	Cyanocobalamin
С	Ascorbic acid

Vitamins

- All vitamins are metabolically essential but not all required in the diet
 - Most mammals can synthesize vitamin C; not humans and primates
 - No mammal can synthesize B vitamins but rumen bacteria do

Vitamins

- Some function as vitamins after undergoing a chemical change
 - Provitamins (e.g., β-carotene to vitamin A)

Classification

- Based on solubility in the laboratory, but solubility greatly influences how the body absorbs, transports and stores vitamins
- Fat-soluble
 - Vitamins A, D, E and K
- Water-soluble
 - B vitamins and vitamin C

The Basics of Water-Soluble Vitamins

- Dissolve in water
- B vitamins & vitamin C
- Absorbed mostly in small intestine & stomach
- Bioavailability
 - Nutritional status, other nutrients & substances in food, medications, age, illness
- Circulated to liver in blood
 - Not stored in large quantities

Digestion

The Basics of Water-Soluble Vitamins

General Characteristics

Vitamins in Foods

- · Bound to proteins that must be cleaved prior to absorption

 Easily destroyed during cooking
- · Digested mostly in small intestine
- Absorption
 - · Absorbed mostly in small intestine, but also in stomach
 - Absorbed via simple diffusion when intake is high and active transport when intake is low
 - Bioavailability is influenced by many factors

Circulation

· Transported via blood to liver

Functions

Many coenzyme and other roles, especially in energy metabolism

Toxicity Effects

· Minimal, although some exist

Naming the Vitamins

- First named vitamin A or B
- B-complex vitamins
- Given common names also
 - Thiamin
 - Riboflavin
 - Niacin
- Chemical names
 - Ascorbic acid

Thiamin (Vitamin B₁)

- Contains thiol & amine group
- Thiamin pyrophosphate (TPP) or thiamin diphosphate
- Thiamin triphosphate

Bioavailability & Regulation of Thiamin in the Body

- Bioavailability
 - Increases when low
 - Uses simple diffusion when high
- Antithiamin factors
 - Raw fish, coffee, tea, berries, brussels sprouts, cabbage
- Vitamin C prevents oxidation
- Alcohol inhibits thiamin
- Excess excreted in urine

Functions of Thiamin

- ATP production
- Synthesis of DNA & RNA
- Noncoenzyme roles

-	
O	

Thiamin Deficiency: Beriberi

- "I can't, I can't"
- Prevalent in parts of the world that rely on unfortified, milled rice as staple
- Causes weak & impaired immune function
- Types
 - Dry, wet, infantile, cerebral (Wernicke-Korsakoff syndrome)

Did you know...

 Riboflavin is easily destroyed by light so milk is packaged in cardboard or cloudy plastic containers so it is not destroyed.

Regulation & Bioavailability of Riboflavin

- Types:
 - Free form
 - Can be absorbed
 - Bound to protein
 - Coenzyme (FMN or FAD)
- Absorption through simple diffusion when intake high
 - Active transport when intake low
- Animal foods more bioavailable
- Alcohol inhibits absorption
- Excess excreted in urine

	· · ·	

Coenzyme Functions of Riboflavin

- Energy metabolism
- Redox reactions
- Formation of ATP, water, carbon dioxide
- β-oxidation
- Converts vitamin A & folate to active forms, tryptophan to niacin
- Forms vitamin B₆ & K

Riboflavin Deficiency

- Ariboflavinosis
 - Weakness, cheilosis, stomatitis, glossitis, anemia, confusion
- Alcoholics
- Diseases that interfere w/ riboflavin utilization

Dietary Sources of Niacin

- 1 mg niacin = 60 mg tryptophan
- Niacin equivalent
 - Combined amounts of niacin & tryptophan in foods

Bioavailability of Niacin

- Animal products more bioavailable than plant
- Increasing bioavailability
 - Treating grain products with alkaline substances cleaves protein from niacin

Regulation of Niacin in Body

- Small intestinal absorption
 - Simple diffusion when intake is high
 - Active transport when intake is low
- Circulated to liver
 - Attached to transport proteins
 - Converted to NAD+ or NADP
- Liver converts tryptophan to niacin when needed

Functions of Niacin

- Coenzymes catalyze redox reactions related to energy metabolism
- Synthesizes fatty acids, cholesterol, steroid hormones, & DNA
- Metabolizes vitamin C & folate
- NAD+
 - Protein synthesis
 - Maintenance, replication & repair of DNA
 - Glucose homeostasis
 - Cholesterol metabolism
- Lower LDL & increase HDL

Niacin Deficiency: Pellagra

- "Rough skin"
- Four Ds
 - Dermatitis
 - Dementia
 - Diarrhea
 - Death

Tryptophan, Niacin, & Pellagra

- Used to be thought of as infectious disease
- Joseph Goldberger
 - Studies done adding protein sources to diet
- Prevented & treated disease through diet
- Enrichment programs developed
- Rare in U.S.

Niacin Toxicity

- Nicotinic acid (1 g/day)
 - Skin inflammation
 - Itchiness
 - Flushing
 - Heartburn
 - Nausea
 - Increased plasma glucose
 - Liver damage

Regulation of Pantothenic Acid in the Body

- Bioavailability
- Increases via active transport when intake is

- Circulated to liver via blood
- Not stored in body
- Coenzyme form high in liver, kidney, heart, adrenal glands, & brain

HO HO HO OF	Н

Functions of Pantothenic Acid in the Body

- Use of glucose, amino acids, & fatty acids for ATP production
- Synthesizes:
 - Heme
 - Cholesterol
 - Bile salts
 - Phospholipids
 - Fatty acids
 - Steroid hormones

Pantothenic Acid Deficiency & Toxicity

- Deficiency
 - Rare
 - "Burning feet syndrome"
- Toxicity
 - Rare
 - Nausea & diarrhea

Vitamin B₆

- Forms
 - Pyridoxine
 - Pyridoxal
 - Pyridoxamine

Similar biological activities

Regulation of Vitamin B_6 in the Body

- Absorbed in small intestine
- Circulated in blood to liver
 - Forms pyridoxal phosphate (PLP)
 - Coenzyme form of B₆
 - Stored in muscle & liver

Functions of Vitamin B_6 in the Body

- PLP coenzyme to metabolism
 - Proteins & amino acids via transamination
- Synthesizes nonessential amino acids
- Produces nonprotein substances
 - Converts tryptophan to niacin

Vitamin B₆ Deficiency: Microcytic Hypochromic Anemia

- Results in inadequate heme production
- Decreases oxygen availability in tissues
- Impairs ability to produce ATP via aerobic metabolism

Vitamin B₆ Toxicity

- Excess supplement use
 - Severe neurological problems
 - Difficulty walking
 - Numbness in hands & feet

Bioavailability of Biotin

- Reduced by:
 - Avidin
 - Egg whites
 - Alcohol

Extreme heat destroys biotin

Regulation of Biotin

- Enzymes cleave to protein-biotin complexes in small intestine
- Produced by large intestine bacteria
- Circulates to liver via blood
- Small amounts stored in
 - Muscle
 - Liver
 - Brain

Functions of Biotin

- Catalyzes carboxylation reactions
- Use of amino acids & fatty acids in citric acid cycle for synthesis of fatty acids
- Gene expression

Biotin Deficiency

- Uncommon
- Seen in:
 - Individuals who eat large quantities of raw egg whites
 - Conditions impairing intestinal absorption
 - Genetic disorders
- Signs & Symptoms
 - Depression, hallucinations, skin irritations, infections, hair loss, poor muscle control, seizures, developmental delays in infants

Folate (Folacin)

- Consists of:
 - Nitrogen-containing double ring structure
 - Nitrogen-containing single ring structure
 - Glutamic acid
- Folic acid
 - Synthetic form
 - Fortified foods& supplements

OH N	DINTON
H.N. V.	

Dietary Sources of Folate

- Since 1998
- All cereal products in U.S. fortified with folic acid
- Heat, light, & oxygen destroy folate

Bioavailability of Folate

- Depends on form
- Influences
 - Genetic factors
 - Drugs
- Absorption higher with:
 - Fortified foods
 - Supplements
- Dietary folate equivalents (DFE)

Regulation of Folate in Body

- Glutamate units must be cleaved before absorbed
 - Converted to tetrahydrofolate (THF)
 - Results in 5-methyl tetrahydrofolate
- Circulated to liver via blood
- Little is stored

Function of Folate: Single-Carbon Transfers

- Coenzyme involved in transfer of singlecarbon groups to form organic substances
 - Homocysteine to methionine
- Purines & pyrimidines
- Normal growth & development

Focus on Life Cycle Nutrition: Folate, Neural Tube Defects, & Spina Bifida

- Neural tube
 - Spinal cord & brain
- Defects result when:
 - Closure of neural tube is incomplete
- Spina bifida
 - **2**0 out of 100,000 babies

Folate, Neural Tube Defects, & Spina Bifida

- Folate supplementation decreases risk in some women
- IOM recommends:
 - That women capable of becoming pregnant take folic acid supplements and/or consume folic acid-fortified foods in addition to a varied diet

Folate Deficiency: Macrocytic Anemia Red blood cells

- Macrocytic anemia
- Red blood cells (RBC) remain immature
- Cells are large & contain organelles not found in mature RBC

Folate Deficiency

- Alcoholics
- People w/ intestinal diseases
- People taking certain medications
- Elderly
- Genetic variations

Regulation of Vitamin B_{12} in the Body

- Must be cleaved before absorption
- Bound to R protein & intrinsic factor
- Once absorbed, binds to transcobalamin
- Circulates to liver via blood
- Stored in liver

Functions of Vitamin B₁₂

Coenzyme that catalyzes:

- Production of succinyl CoA
 - Uses amino acids & fatty acids for ATP production
 - Key for ruminants!!
- Conversion of homocysteine to methionine
 - Allows use of folate

Vitamin B₁₂ Deficiency & Pernicious Anemia

- Vegans
- Breastfed infants of B₁₂deficient mothers
- Elderly
- Pernicious anemia
 - Gastric cells stop intrinsic factor secretion
 - Injections of B₁₂ given
- Signs & symptoms
 - Macrocytic anemia, fatigue, difficulty sleeping, numbness, memory loss, severe neurological disturbances

Folate, Vitamin B₁₂, & Anemia

- B₁₂ Deficiency
 - Caused by secondary folate deficiency
 - Folate "masks" B₁₂ deficiency

Regulation of Vitamin C in the Body

- Absorption in small intestine via active transport
- Uses glucose transport protein
- High intakes
 - Absorbed by simple diffusion in stomach & small intestine
- Circulates to liver via blood
- Excess excreted in urine

пО	
но-	
H/	№ 0
\=	-(
HO	HO'

Functions of Vitamin C

- Antioxidant
- Accepts & donates electrons
- Involved in a variety of redox reactions

The "Recharging" of Enzymes Active enzyme containing reduced iron (Fe[®]) catalyzes the conversion of a substrate into a product. This results in the outself of iron and inactivation of the enzyme. Substrate Fe^{®*} is oxidized. Fe^{®*} is Oxidized. Fe^{®*} is Fe^{®*} is Reduced vitamin C Partially oxidized vitamin C

Examples

- Collagen
- Synthesis of carnitine
- Synthesis of hormones
 - Cholecystokinin
 - Gastrin

Bioavailability

- Enhances absorption of:
 - Iron
 - Copper
 - Chromium
- Consuming vitamin C sources with these minerals increases their bioavailability
- Example
 - Orange juice + iron-enriched cereal

Vitamin C & Protection from Free Radical Damage

- Free radicals
 - Charged substances that have unpaired electrons in their outer shells
 - Break DNA & oxidize fatty acids found in cell membranes
- Vitamin C
 - Destroys free radicals

Vitamin C, the Common Cold, & Other Diseases

- Suggested that large vitamin C doses benefit immune system
- More research needed:
 - Common cold
 - Cancer
 - Heart disease
 - Cataracts

Vitamin C Deficiency & Toxicity

- Deficiency
 - Scurvy
- Signs & symptoms
 - Bleeding gums
 - Skin irritations
 - Bruising
 - Poor wound healing

- Toxicity
 - Nausea
 - Diarrhea
 - Cupmaning
 - Cramping
 - Kidney stones

Choline: A "New" Essential Vitamin?

- IOM
 - Designated choline as essential in some situations
- Certain populations at risk
- ? conditionally essential
- Some do not consider it a vitamin

ar iir boinic	
$\begin{bmatrix} \begin{matrix} \\ \end{matrix} \\ \begin{matrix} \end{matrix} \\ \begin{matrix} \end{matrix} \\ \end{matrix} \\ \begin{matrix} \end{matrix} \\ \begin{matrix} \end{matrix} \\ \end{matrix} \\$	X-

Dietary Sources of Choline

- Plant & animal foods
 - Eggs, liver, legumes, pork
- Lecithin
 - Mayonnaise & salad dressings

Regulation of Choline in the Body

- Unbound choline absorbed in small intestine
- Circulates to liver via blood
- Lecithin
 - Cleaved from glycerol backbone by pancreatic enzymes
 - Taken up by intestinal cells & reconstituted into lecithin molecules
 - Released into lymph
 - Becomes LDL
- Made in body by methionine

Functions of Choline in Body

- Synthesizes phospholipids & acetylcholine
- Component of cell membranes & lipoproteins
- Muscle control
- Structural role
- Metabolic reactions

Choline Deficiency & Toxicity

- Deficiency
 - ? liver damage in adult men
- Toxicity
 - Fishy body odor, perspiration, salivation, low blood glucose, liver damage

Carnitine

- Conditionally essential for infants
- Classification being debated
- Animal sources
 - Meat, milk, & human milk

Regulation & Functions of Carnitine in the body

- Absorbed in small intestine
- Produced from methionine & lysine
- Assists fatty acids to cross membranes

Carnitine Deficiency & Toxicity

- Deficiency
 - Rare
 - Genetic conditions
 - Muscle weakness, hypoglycemia, heart irregularities
- Toxicity
 - None known

Fat-Soluble Vitamins

- Organic substances that dissolve in lipids & are vital to health
- Micronutrients
- Vitamins A, D, E, & K
- Key players in:
 - Cell growth
 - Maturation
 - Gene regulation

Basics of Fat-Soluble Vitamins

- Absorbed in small intestine
- Requires lipids & bile
- Circulated in lymph via chylomicrons
- Become part of lipoproteins or bound to transport proteins
- Antioxidant properties
- Stored in body

Vitamin A & the Carotenoids

Retinoids

- Retinol (preformed vitamin A)
 - Most potent form
 - Can be synthesized from retinal
- Retinal
 - Can be converted to retinoic acid
- Retinoic acid

Carotenoids

Types

- Provitamin A carotenoids
 - Beta-carotene
 - Can be converted to vitamin A
- Nonprovitamin A carotenoids
 - Cannot be converted to vitamin A
 - Lycopene, astaxianthin, zeaxanthin, lutein
 - Considered phytochemicals

Dietary Sources of Vitamin A & Provitamin A Carotenoids

- Retinol activity equivalent (RAE)
 - 1 RAE = 12 micrograms beta-carotene & 1 microgram retinol
- Preformed vitamin A
 - Organ meats, liver, fatty fish, dairy products
- Provitamin A
 - Yellow, orange, red fruits/veg, leafy greens

Regulation of Vitamin A & Carotenoids in Body

- Contained in chylomicrons
- Enter lymph
- Join blood at thoracic duct
- Delivered to adipose tissue, muscle, & eye
- What is not used, taken back to liver
 - Carotenoids packaged into VLDLs
 - Vitamin A attached to retinol binding proteins & transthyretin

Vitamin A Synthesis and Storage

- β-carotene is converted to vitamin A in the intestinal mucosa
- 90% is stored in liver, mainly as the ester, retinyl palmitate
- Carotenoids can be stored in adipose tissue

Functions of Vitamin A

- Cell differentiation
- Maintaining healthy immune system
- Building strong bones
- Vision

Night Blindness

- Inadequate amounts of retinal to re-form rhodopsin
 - Compound in retina that consists of the protein opsin & vitamin cis-retinal that is needed for night vision
- Night vision becomes difficult

Vitamin A, Growth & Reproduction

- Regulates cell differentiation
- Example
 - During embryonic growth, vitamin A assists in differentiation & maturation of tissues & organs
- Needed for successful reproduction

Vitamin A & the Immune Function

- Maintains protective barriers
 - Epithelial tissues
- Helps produces lymphocytes & antibodies
 - Deficiencies increased rate of infectious disease & illness

Vitamin A, the Carotenoids, & Cancer

- Epidemiological studies
 - Diets rich in vitamin A or carotenoids associated with lower risk of some types of cancers
 - Long-term, high-dose supplementation of betacarotene in combination with other dietary factors increases incidence of lung & colorectal cancer
- Recommendation
 - Do not take vitamin A &/or beta-carotene supplements to reduce cancer risk

Vitamin A & Bone Health

- Required for processes with osteoclasts & osteoblasts
 - Favors bone formation
- High preformed vitamin A intake
 - May lead to greater risk of bone fractures in older people
- Research needed?

Functions of Carotenoids

- Influences immune system
 - Antioxidant function
 - Regulation of gene expression
 - Maintenance of normal cell turnover
 - Decreases risk for certain diseases

Focus on Foods: Fruits, Vegetables, Carotenoids, & Health

- Lutein
 - May decrease growth of breast tumors
- Lycopene
 - Related to lower risk of prostate cancer
- Lutein & zeaxanthin
 - Related to decreased risk of macular degeneration

Make your plate colorful!

- Beta-carotene
 - Carrots, sweet potatoes
- Lycopene
 - Tomatoes, pink grapefruit, apricots, watermelon
- Lutein
 - Dark green leafy vegetables

Vitamin A Deficiency

- Uncommon in industrialized countries
- Secondary vitamin A deficiency
 - Cystic fibrosis
 - Alcoholics

Vitamin A Deficiency Disorder (VADD)

- Increased risk of infection
- Night blindness
- Xerophthalmia
 - Dry eyes & scarringBitot's spotsBlindness
- Hyperkeratosis Skin is rough, bumpy, irritated

Focus on Diet & Health: Vitamin A & International Child Health

- 100-400 million children have VADD
 - Nonindustrialized countries
 - Vitamin A supplementation decreases morbidity & mortality
- WHO
 - Recommends supplementation after 6 months in needed regions
- Biotechnology

Biotechnology: Golden Rice

Vitamin A & Carotenoid Toxicity

- Upper safe levels are 4-10x requirements in nonruminants and 30x in ruminants
- Hypervitaminosis A in humans
 - Polar explorers eating polar bear or seal liver
 - Self-medication and overprescription

 - Blurred visionLiver abnormalities
 - Reduced bone strength
 - Birth defects
 - Increase risk of lung cancer
 Hypercarotenemia

Regulation, Metabolism, & Synthesis of Vitamin D

- Packaged into micelles
- Absorbed into enterocyte
- Incorporated into chylomicrons
- Lymph, then blood
- Remnants taken to liver
- "Sunshine vitamin"

Influences on Vitamin D Synthesis

- Areas with smog, overcast weather, very short days
- Darker skin
- Sunscreen
- Age-related changes

Functions of Vitamin D

- Regulation of:
 - Blood calcium concentration
 - Gene expression
 - Cell differentiation

Vitamin D, Cell Differentiation, & Cancer

- Movement of vitamin D into nucleus
- Stimulation of genes coding for specific proteins
- Examples
 - Bone health
 - GI function
 - ? prevention of colon, breast, skin, prostate cancers

Vitamin D Deficiency

- Rickets
- Osteomalacia
- Osteoporosis
- People over 50:
 - Get > 15 minutes sun exposure/day
 - Increase vitamin D intake

Vitamin D Toxicity

- Hypercalcemia
 - Oversupplementation
 - Deposits of calcium in soft tissues
 - Affects function of nervous system
 - Promotes bone loss
 - Death

Vitamin E

- 8 different compounds
- alpha-tocopherol
 - Most biologically active

Regulation of Vitamin E in Body

- Requires bile & synthesis of micelles
- Circulated in chylomicrons via lymph & blood
- Liver
 - Repackaged into VLDLs
- Excess
 - Stored in adipose tissue

Cell Membrane Structure Free radicals have unpaired electrons in their outer shells, making them unstable. Free radicals damage (oxidize) fatty acids in phospholipid bilayers. Vitamin E reduces free radicals, stabilizing them so that they do not damage the cell membrane. Key Phospholipid Damaged (oxidized) phospholipid Unstable free radical Missing electron Reduced vitamin E Oxidized vitamin E

Vitamin E & Cancer

- Antioxidants protect DNA from free radical damage
- ? if vitamin E might prevent or cure cancer
- Diets high in vitamin E
 - Associated with decreased cancer risk
 - Little experimental evidence

Vitamin E & Cataracts

- Cloudy growths that develop on the lens of the eye
- Causes vision to become cloudy
- Can lead to blindness
- Evidence *suggests*:
 - Older people who take vitamin E supplements are at lower risk for developing cataracts

Vitamin E & Heart Disease

- Slows rate of plaque formation
- Supplementation
 - 400 mg/day
 - Causes overall increased risk of mortality
- Recommendation
 - Taking vitamin E supplements to decrease risk of heart disease is discouraged

Vitamin E Deficiency

- Uncommon
- Reports in:
 - Infants fed formulas with inadequate vitamin E
 - Genetic abnormalities
 - Fat malabsorption
- Symptoms
 - Neuromuscular problems, loss of coordination, muscular pain
 - Hemolytic anemia

Vitamin E Toxicity

- Rare
- Very high doses:
 - Hemorrhages
 - Genetic differences
- Caution:
 - Vitamin E supplements

4

Regulation of Vitamin K in the Body

- Absorbed via micelles
 - Incorporated into chylomicrons
 - Enters lymph & then blood
- Vitamin K produced in large intestine
 - Enters epithelial cells by simple diffusion
- Liver
 - Packages dietary & bacterially produced forms into lipoproteins

Did you know...

- Vitamin K also catalyzes carboxylation of other proteins for bone & tooth development
- Binds calcium
- If you take a calcium supplement, take a look at the label. More than likely, vitamin K is an ingredient!

Nutrient-Drug Interactions & Vitamin K

- Long-term antibiotic use
 - Kills intestinal bacteria
 - Increases risk for deficiency
- Coumadin (warfarin)
 - "Thins the blood"
 - Decreases activity of vitamin K
 - Eat a balanced diet
- Limit foods high in vitamin K to one serving each day
- Dicoumarol found in moldy sweet clover
 - Sweet clover disease

Vitamin K Deficiency & Toxicity

- Rare
 - Infants
 - Diseases that cause lipid malabsorption
 - Prolonged antibiotic use
- Deficiency signs
 - Excessive bleeding
- Few toxic effects

Vitamin K Injections During Infancy

- Infants born with low stores
- Large intestine lacks vitamin Kproducing bacteria
- Human milk contains low levels
- Vitamin K deficiency bleeding (VKDB)
 - Mostly in breastfed infants
 - 5-10 babies/100,000 born

Fat-soluble Vitamins

- Absorbed with dietary fat in small intestine
- 40-90% absorption efficiency
- Absorption typically regulated by need
 ↑need→ ↑absorption
- Transported away from small intestine in chylomicra via blood and lymph (depending on size)

Fat-soluble Vitamins, Cont.

- Liver either stores the vitamin or repackages it for delivery to other cells
 - Excess vitamin accumulates in liver and adipose
 - Toxicities can occur; almost always associated with supplement use (not foods)

Water-soluble Vitamins

- Absorbed at the small intestine
- Absorption often highly regulated by either other vitamins or binding proteins in the small intestine
- Transported away from small intestine in blood
- Typically not stored; instead, kidney filters excess into urine
 - Thus, more important to get these vitamins daily.
 - Toxicities almost unheard of

Vitamin Supplements: Making Wise Choices

- Dietary supplements not approved by FDA for safety & effectiveness
- Responsibility of:
 - Manufacturers
 - Distributors

Sorting Fact from Fiction

- Office of Dietary Supplements
- http://ods.od.nih.gov
- Remember:
 - Safety first
 - Think twice about chasing the latest headline
 - Learn to spot false claims
 - More may not be better
 - "Natural" does not always mean safe

When Should You Consider Taking A Supplement?

- Food availability limited
- Not consuming certain foods
- Periods of rapid growth & development
- Economic situations are difficult
- Use of low-calorie diet

Remember...

- Supplements should never replace medications or a variety of foods
- Do not exceed ULs
- Keep a record of all dietary supplements taken & share with healthcare provider