Živilstvo in prehrana

2. kolokvij iz fizike

1. Z vzmetjo - konstanta prožnosti $10 \mathrm{~N} / \mathrm{cm}$ - v nebo izstrelimo kamenček z maso 10 g . Pri tem vzmet stisnemo za 5 cm . Kolikšno delo je za to potrebno? Kako visoko se kamenček dvigne, če predpostavimo, da prejme vso energijo sproščene vzmeti? Za koliko moramo vzmet stisniti, če želimo, da ima kamenček na višini 10 m hitrost $2 \mathrm{~m} / \mathrm{s}$?
2. Savno s površino sten $20 \mathrm{~m}^{2}$ ogrevamo s pečjo, ki oddaja toplotni tok 4 kW . Kolikšna je temperatura v savni, če je zunanja temperatura $20^{\circ} \mathrm{C}$? Stene so narejene iz lesa debeline 3 cm in 2 cm debele plasti izolacijskega materiala. Les ima toplotno prevodnost $0.4 \mathrm{~W} / \mathrm{mK}$, izolacijski material pa $0.1 \mathrm{~W} / \mathrm{mK}$. Kolikšna je temperatura med steno in plastjo izolacije? Nariši tudi temperaturni profil vzdolž stene.
3. Kolikšen tlak je potreben, da imamo v posodi s prostornino $14 \mathrm{dm}^{3}$ pri temperaturi $20^{\circ} \mathrm{C}$ 2.6 kg kisika? Relativna molekulska masa kisika je 32. Plin nato izotermno razpnemo, tako da tlak znaša 1 bar. Kolikšen je volumen plina? Kolikšna je sprememba notranje energije plina in koliko dela/toplote plin prejme oz. odda?
4. Trije navpični vodniki tvorijo stranice tristrane prizme z osnovnico 10 cm . Skozi tečejo električni tokovi $\mathrm{I}_{1}=1 \mathrm{~A}, \mathrm{I}_{2}=2 \mathrm{~A}$ in $\mathrm{I}_{3}=3 \mathrm{~A}$ v smereh kot jih prikazuje spodnja slika. Kolikšna sila deluje na 2 m odsek tretjega vodnika?

Rešitve kolokvija:
1.1

$$
A=\frac{k x^{2}}{2}=1.25 \mathrm{~J}
$$

1.2

$$
W_{p}=A \xrightarrow{\text { sledi }} h=12.7 \mathrm{~m}
$$

1.3

$$
W_{p}+W_{k}=W_{p r} \xrightarrow{\text { sledi }} x=4.5 \mathrm{~cm}
$$

2.1

$$
\begin{aligned}
& P=\frac{\lambda\left(T_{0}-T_{Z}\right) S}{d_{1}} \xrightarrow{\text { sledi }} T_{0}=60^{\circ} \mathrm{C} \\
& P=\frac{\lambda\left(T_{N}-T_{0}\right) S}{d_{1}} \xrightarrow{\text { sledi }} T_{N}=75^{\circ} \mathrm{C}
\end{aligned}
$$

3.1

$$
p=\frac{m R T}{M V}=141.3 \mathrm{bar}
$$

3.2

$$
p_{1} V_{1}=p_{2} V_{2} \xrightarrow{\text { sledi }} V_{2}=1.98 \mathrm{~m}^{3}
$$

3.2

$$
\begin{gathered}
\Delta W_{n}=0 \\
\mathrm{~A}=-p_{1} V_{1} \ln \left(\frac{V_{2}}{V_{1}}\right)=979 \mathrm{~kJ}=-\mathrm{Q}
\end{gathered}
$$

4.1

$$
\begin{gathered}
\left|B_{1}\right|=\frac{I_{1} \mu_{0}}{2 \pi a} \quad\left|B_{2}\right|=\frac{I_{1} \mu_{0}}{2 \pi a} \\
B_{x}=\left|B_{2}\right|+\left|B_{1}\right| \cos (\delta) \quad B_{y}=\left|B_{1}\right| \sin (\delta) \\
F=I_{3} l \sqrt{B_{x}^{2}+B_{y}^{2}}=3.5 \mu \mathrm{~N}
\end{gathered}
$$

