ENERGY

Nutrition Sciences Nutr 2901

ISSUES TO BE COVERED

- Energy processes
- Energy requirements
- Energy in the diet
- Measurement of energy expenditure
- Energy balance undernutrition overnutrition

David Blane London, 2003

FORMS OF ENERGY

- Solar
- Chemical
- Mechanical
- Electrical
- Thermal

Glandular Function (hormones)

Energy

Synthesis of New Tissues	Transmission

Nutrient Absorption

Neural

First Law of Thermodynamics

- Fundamental biological principleenergy is not produced, consumed, or used up. It is merely transformed from one form into another
- This Law illustrates the principle of the Conservation of Energy

Energy $=$ Energy $=$ Energy

- All forms of biological work are powered by the direct transfer of chemical energy
-Chemical energy -> mechanical work (muscle contraction) electrical work (ionic gradients) chemical work (synthesis of new molecules) Thermal energy (dissipation of heat)

Food Is a Source of Chemical Energy

- Macronutrients in food can be broken down to liberate energy
- Not all energy in food available to body
- Not all absorbed
- Not completely metabolised (urea)
- Inefficiencies in processing and storage

Bomb Calorimeter

A Joule or a Calorie Is A Measure Of Energy For Both Food And Physical Activity

Definitions:

A Calorie is the Amount of Heat Required to increase 1 kg of Water by 1 Degree Centigrade (use kcal)
A joule is the energy used when 1 kg is moved 1 m by a force of 1 newton (use kj)

$$
\text { 1 calorie }(\mathrm{kcal})=4.184 \mathrm{kj}
$$

Energy In Food

Bomb
 Calorimeter

Net Value
 to Body

CHO: $\quad 17.5 \longrightarrow 17.3 \mathrm{kj} / \mathrm{g}$
FAT 39.1
$\longrightarrow 37.1 \mathrm{kj} / \mathrm{g}$
PROTEIN $22.9 \longrightarrow 15.9 \mathrm{kj} / \mathrm{g}$
(UREA)

Alcohol	29.8		
Fibre	\longrightarrow	\longrightarrow	
			$4 \mathrm{KJ} / \mathrm{g}$

The "Energy Currency"

1 Adenosine
$+$
3 Phosphates
(Adenine + Ribose)
(Phosphorus + Oxygen)

ATP Hydrolysis

$\mathrm{ATP}+\mathrm{H}_{2} \mathrm{O}------->\mathrm{ADP}+\mathrm{Pi}+-7.3 \mathrm{kCal} /$ mole

Cellular energy stores

- ATP
- Creatine phosphate
- Glycogen
- Triglycerides

Measurement of energy expenditure

Direct Calorimetry
 Measure heat production in an airtight Chamber/suit

Indirect Calorimetry

Measure oxygen uptake, carbon dioxide production

1. Open-circuit: inhale ambient air. Spirometers, meteorological balloons, computer interfaced,
2. Closed-circuit: inhale and exhale from tank

Principles of indirect calorimetry

- Food $+\mathrm{O}_{2}$-> heat $+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
- $\mathrm{EE}(\mathrm{kj})=16.318 \mathrm{VO}_{2}+4.628 \mathrm{VCO}_{2}-9.079 \mathrm{~N}$ (g)
- Respiratory Quotient can be assessed
. ** Sealed chamber - all food entering and waste leaving is measured
- **Urinary N measured
**- whole body chambers

Respiratory Quotient (RQ)

- Ratio of $\mathrm{VCO}_{2} / \mathrm{VO}_{2}$
- Guide to the mixture of nutrients being oxidised
- RQ Fat - 0.7, Protein- 0.81, CHO - 1.0 alcohol - 0.66
- Avoid alcohol and calculate protein metabolism from urinary N allow estimation of diet composition

Equipment for indirect calorimetry

- Douglas bag
- Respirometer
- Ventilated hood
- Whole body chamber

Oxygen Uptake Measurements

Human Calorimeter

Non-calorimetric estimation of energy expenditure

- Heart rate
- Doubly-labelled water
- Measures of physical activity questionnaires
movement monitors

Components of energy expenditure

- Basal metabolic rate

Energy required to sustain essential metabolic functions (including growth)

- Thermic effect of food

Obligatory
Facultative

- Physical activity

Components Of Daily Energy Expenditure

Basal Metabolic Rate

Gender

Metabolic Changes

Age

Climate

Hormones

Surface Area

Drugs

Approximate BMR (ages 20 to 40 years):
Women $=35 \mathrm{kcal} / \mathrm{m} 2 /$ hour Men $=38 \mathrm{kcal} / \mathrm{m} 2 / \mathrm{hour}$

Thermic effect of food

- Energy cost for
absorption metabolism storage
- Can vary with
type and composition of food Autonomic nervous system activity futile cycles -> heat
- Also known as "diet induced thermogenesis" DIT

Estimating energy requirement

- Calculate energy intake very imprecise due to technical problems with measuring intake and under-reporting
- Estimate BMR and level of physical activity
Prediction equations for BMR and estimate level of physical activity
- Measure BMR by indirect calorimetry and apply estimate of physical activity

Estimating physical activity

- MET (Metabolic Equivalent Task) Factor estimates intensity of a single activity as a multiple of BMR
- PAL (Physical Activity Level) Factor estimates the total daily physical activity as a multiple of BMR

MET associated with certain activities

Activity	Description	MET
Walking	moderate pace	3.2
Cycling	Leisure medium pace	7
Walking up stairs	Usual pace	8
gardening	Moderate intensity	4
Shovelling now	Medium-Heavy labour	6

Daily energy expenditure as multiples of BMR (PAL)

	Males	females
Activity level	Average	Average
Bed rest	1.2	1.2
Very sedentary	1.3	1.3
Sedentary/maintenance	1.4	1.4
Light	1.5	$1^{*} 5$
Light-moderate	1.7	1.6
moderate	1.8	1.7
Heavy	2.1	1.8
Very heavy	2.3	2.0

Equations for estimating basal metabolic rate (BMR) in MJ/day

Age group	Equation
Males	
$10-18$	$0.074 w t+2.754$
$18-30$	$0.063 w t+2.896$
$30-\mathrm{w}$	$0.048 \mathrm{wt}+3.653$
Over 60	$0.049 \mathrm{wt}+2.459$
Females	$0.056 \mathrm{wt}+2.898$
$10-18$	$0.062 \mathrm{wt}+2.036$
$18-30$	$0.034 \mathrm{wt}+3.538$
$30-\mathrm{w}$	$0.038 \mathrm{wt}+2.755$
Over 60	

Recommended energy intakes for adults (MJ/day)

$18-30$ years		Males	Females
Height (cm)	Weight (kg)		
150	50.6		$7.2-8.3$
160	57.6	$9.1-10.4$	$7.9-9.0$
170	65.0	$9.8-11.2$	$83-9.7$
180	72.9	$10.5-12.0$	$9.2-10.5$
190	81.2	$11.2-12.8$	$9.9-11.3$
200	90.0	$12.0-13.7$	

Classifying Activities By Energy Sources

Anaerobic

Aerobic

Brief actions - Endurance High intensity Glycolysis 5% of ATP

Aerobic vs Anaerobic

Aerobic
 Anaerobic

- Walking
- Dancing
- Jogging
- Recreational swimming
- Tennis
- Hiking
- Sprinting
- Lifting weights
- Jumping
- Chopping wood
- Activities of short duration

Energy Systems

Different Energy Systems

Anaerobic and Aerobic Exercise

Exercise Equivalentsof Foods					
Food	Kcal	Walk	Cycle	Swim	Jog
Beer, 250 ml	115	22	18	14	12
Wine, 120 ml	110	21	17	13	11
Candy bar, 40 g	218	42	34	26	22
Doritos, 30g	140	27	22	16	14
Banana split, 300 g	594	114	91	70	60
Big Mac	563	108	85	66	56
Milk Shake, 300ml	364	70	56	43	36
Brownie, 30 g	146	28	22	17	15
Peanut butter sandwich 328	63	50	40	34	
Pop corn, 1 cup	55	10	8	6	5

