

Nutrition Sciences Nutr 2901

ISSUES TO BE COVERED

- Energy processes
- Energy requirements
- Energy in the diet
- Measurement of energy expenditure
- Energy balance undernutrition overnutrition

David Blane London, 2003

IRISH HUNGER STRIKERS 1981

Sands 5 May 81 66 days

O'Hara 21 May 81 61 days

McCreesh 21 May 81 61 days

McElwee 8 Aug 81 62 days

McDonnell 8 July 81 61 days

Devine 20 Aug 81 60 days

Hurson 13 July 81 46 days

Lynch

1 Aug 81

71 days

Hughes

12 May 81

59 days

2 Aug 81 73 days

FORMS OF ENERGY

- Solar
- Chemical
- Mechanical
- Electrical
- Thermal

First Law of Thermodynamics

- Fundamental biological principle energy is not produced, consumed, or used up. It is merely transformed from one form into another
- This Law illustrates the principle of the *Conservation of Energy*

Energy = Energy = Energy

- All forms of biological work are powered by the direct *transfer* of chemical energy
- Chemical energy -> mechanical work (muscle contraction) electrical work (ionic gradients) chemical work (synthesis of new molecules) Thermal energy (dissipation of heat)

Food Is a Source of Chemical Energy

- Macronutrients in food can be broken down to liberate energy
- Not all energy in food available to body
 - Not all absorbed
 - Not completely metabolised (urea)
 - Inefficiencies in processing and storage

Bomb Calorimeter

What Is A Joule or a Calorie?

A Joule or a Calorie Is A Measure Of Energy For Both Food And Physical Activity

Definitions:

A Calorie is the Amount of Heat Required to increase 1 kg of Water by 1 Degree Centigrade (use kcal)

A joule is the energy used when 1kg is moved 1m by a force of 1 newton (use kj)

1calorie (kcal)= 4.184 kj

Energy In Food				
Borr Calorin		Net Value to Body		
CHO:	17.5 —	—→ 17.3 kj/g		
FAT	39.1	→ 37.1 kj/g		
PROTEIN	22.9	—→ 15.9kj/g		
Alcohol	(URÉA) 29.8 —	29.8 kj/g		
Fibre	? —	→ * 4 KJ/g		

ATP Hydrolysis $ATP + H_2O - ADP + Pi + -7.3 \text{ kCal/mole}$

Cellular energy stores

- ATP
- Creatine phosphate
- Glycogen
- Triglycerides

Measurement of energy expenditure

Direct Calorimetry

Measure heat production in an airtight Chamber/suit

Indirect Calorimetry

Measure oxygen uptake, carbon dioxide production

- 1. Open-circuit: inhale ambient air. Spirometers, meteorological balloons, computer interfaced,
- 2. Closed-circuit: inhale and exhale from tank

Principles of indirect calorimetry

- Food $+O_2$ ->heat + CO_2 + H_2O
- EE(kj)=16.318VO₂+4.628VCO₂-9.079N (g)
- Respiratory Quotient can be assessed
- ** Sealed chamber all food entering and waste leaving is measured
- **Urinary N measured

**- whole body chambers

Respiratory Quotient (RQ)

- Ratio of VCO₂/VO₂
- Guide to the mixture of nutrients being oxidised
- RQ Fat 0.7, Protein- 0.81, CHO 1.0 alcohol – 0.66
- Avoid alcohol and calculate protein metabolism from urinary N allow estimation of diet composition

Equipment for indirect calorimetry

- Douglas bag
- Respirometer
- Ventilated hood
- Whole body chamber

Oxygen Uptake Measurements

Human Calorimeter

Non-calorimetric estimation of energy expenditure

- Heart rate
- Doubly-labelled water
- Measures of physical activity questionnaires movement monitors

Components of energy expenditure

- Basal metabolic rate
 Energy required to sustain essential metabolic functions (including growth)
- Thermic effect of food
 Obligatory
 Facultative
- Physical activity

Thermic effect of food

Energy cost for

absorption metabolism storage

Can vary with type and composition of food

Autonomic nervous system activity futile cycles -> heat

 Also known as "diet induced thermogenesis" DIT

Estimating energy requirement

- Calculate energy intake very imprecise due to technical problems with measuring intake and under-reporting
- Estimate BMR and level of physical activity

Prediction equations for BMR and estimate level of physical activity

Measure BMR by indirect calorimetry and apply estimate of physical activity

Estimating physical activity

- MET (Metabolic Equivalent Task) Factor estimates intensity of a single activity as a multiple of BMR
- PAL (Physical Activity Level) Factor estimates the total daily physical activity as a multiple of BMR

MET associated with certain activities

Activity	Description	MET
Walking	moderate pace	3.2
Cycling	Leisure medium pace	7
Walking up stairs	Usual pace	8
gardening	Moderate intensity	4
Shovelling snow	Medium-Heavy labour	6

Daily energy expenditure as multiples of BMR (PAL)

	Males	females
Activity level	Average	Average
Bed rest	1.2	1.2
Very sedentary	1.3	1.3
Sedentary/maintenance	1.4	1.4
Light	1.5	1 * 5
Light-moderate	1.7	1.6
moderate	1.8	1.7
Heavy	2.1	1.8
Very heavy	2.3	2.0

Equations for estimating basal metabolic rate (BMR) in MJ/day

Age group	Equation
Males	
10-18	0.074wt + 2.754
18-30	0.063wt + 2.896
30-W	0.048wt + 3.653
over 60	0.049wt + 2.459
Females	
10-18	0.056wt + 2.898
18-30	0.062wt + 2.036
30-W	0.034wt + 3.538
Over 60	0.038wt + 2.755

Recommended energy intakes for adults (MJ/day)

18-30 years		Males	Females
Height (cm)	Weight (kg)		
150	50.6		7.2-8.3
160	57.6	9.1-10.4	7.9-9.0
170	65.0	9.8-11.2	83-9.7
180	72.9	10.5-12.0	9.2-10.5
190	81.2	11.2-12.8	9.9-11.3
200	90.0	12.0-13.7	

Aerobic vs Anaerobic

Aerobic

Anaerobic

- Walking
- Dancing
- Jogging
- Recreational swimming
- Tennis
- Hiking

- Sprinting
- Lifting weights
- Jumping
- Chopping wood
- Activities of short duration

Energy Systems

Different Energy Systems

Anaerobic and Aerobic Exercise

Exercise Equivalents Of Foods

Food	Kcal	Walk	Cycle	Swim	Jog
Beer, 250 ml	115	22	18	14	12
Wine, 120 ml	110	21	17	13	11
Candy bar, 40 g	218	42	34	26	22
Doritos, 30g	140	27	22	16	14
Banana split, 300 g	594	114	91	70	60
Big Mac	563	108	85	66	56
Milk Shake, 300ml	364	70	56	43	36
Brownie, 30 g	146	28	22	17	15
Peanut butter sandwich	328	63	50	40	34
Pop corn, 1 cup	55	10	8	6	5