#### Minerals

Inorganic elemental atoms that are <u>essential</u> nutrients. Not changed by digestion or metabolism.

#### Functions of Minerals

- Some participate with enzymes in metabolic processes (cofactors)
- Some have structural functions (Ca, P in bone; S in keratin)
- Acid-base and water balance (Na, K, Cl)
- Nerve & muscle function (Ca, Na, K)
- Unique functions (e.g., heme, B<sub>12</sub>, thyroid hormones)

## The Major Minerals: an Overview

- Macrominerals
- Humans need >100 mg/d
  - Calcium
  - Phosphorus
  - Magnesium
  - Sodium
  - Chloride
  - Potassium





| Nutritionally Important Minerals |      |         |          |  |  |
|----------------------------------|------|---------|----------|--|--|
| Macro                            |      | Trace   |          |  |  |
| Element                          | g/kg | Element | mg/kg    |  |  |
| Са                               | 15   | Fe      | 20-50    |  |  |
| Р                                | 10   | Zn      | 10-50    |  |  |
| Κ                                | 2    | Cu      | 1-5      |  |  |
| Na                               | 1.6  | Мо      | 1-4      |  |  |
| CI                               | 1.1  | Se      | 1-2      |  |  |
| S                                | 1.5  | I       | 0.3-0.6  |  |  |
| Mg                               | 0.4  | Mn      | 0.2-0.5  |  |  |
| -                                |      | Со      | 0.02-0.1 |  |  |





#### Factors Affecting Requirements

- Physiological state/level of production
- Interactions with other minerals







#### Deficiencies and Excesses

- Most minerals have an optimal range
  - Below leads to deficiency symptoms
  - Above leads to toxicity symptoms
- Mineral content of <u>soils</u> dictates mineral status of plants (i.e., feeds)
- May take many months to develop
  - Time impacted by body stores

| - | Requi   | Requirements and Toxicities |                       |                       |  |  |  |
|---|---------|-----------------------------|-----------------------|-----------------------|--|--|--|
|   | Element | Species                     | Requirement,<br>mg/kg | Toxic level,<br>mg/kg |  |  |  |
|   | Cu      | Cattle                      | 5-8                   | 115                   |  |  |  |
|   |         | Swine                       | 6                     | 250                   |  |  |  |
|   | Со      | Cattle                      | 0.06                  | 60                    |  |  |  |
|   | I       | Livestock                   | 0.1                   | ?                     |  |  |  |
|   | Se      | Cattle                      | 0.1                   | 3-4                   |  |  |  |
|   |         | Horses                      | 0.1                   | 5-40                  |  |  |  |







#### Calcium

- Both Ca and P are required for bone formation and other non-skeletal functions
  - Dietary ratio of 1:1 to 2:1 is good for most animals (exception is laying hen, 13:1; Ca:nonphytate phosphorous)

#### **Calcium Absorption**

Dependent on Vitamin D

- Ca binding protein in intestinal epithelial cell
  Absorption depends on need
- Particularly high during growth, pregnancy and lactation
- Bioavailability decreased by
   Phytates (grains)
  - Phytates (grai
    Oxalates
  - OxalatesWheat bran
  - Low estrogen levels (postmenopausal women)

#### Calcium Regulation

Plasma Ca is regulated variable

Normal plasma concentration is 8-12 mg/dl

#### **Calcium Regulation**

- Three hormones involved in regulation
  - Vitamin D<sub>3</sub>
    - from kidney
  - Parathyroid hormone (PTH)
  - from parathyroid gland
  - Calcitonin
  - from thyroid gland
- PTH and Vitamin D<sub>3</sub> act to <u>increase</u> plasma Ca, while calcitonin acts to <u>decrease</u> plasma Ca







## Calcium Deficiencies

#### Rickets

- in growing animals
- Osteomalacia (osteoporosis)
  - in adult animals
- Milk fever (parturient paresis)
  - in lactating animals



















#### Regulatory Functions of Calcium

- Stimulates blood clotting
- Muscle contractions
- Transmission of nerve impulses
- Vision
- Regulation of blood glucose
- Cell differentiation
- Cofactor for energy metabolism







#### Phosphorous

- Impact on environment has scientists revisiting nutritional requirements
  - Requirements are being lowered without any negative effects on reproduction or milk production
- Bioavailability could be improved if phytate P can be reduced
  - Main source of P in grain

#### Phosphorus (P)

- Component of cell membranes & walls
- Found in all foods
- Structural & functional roles in body
- Energy metabolism

# Metabolism & Regulation of Phosphorus in the Body

- Small intestine
  - Vitamin D-dependent active transport
  - Simple diffusion
- Concentrations controlled by:
  - Calcitriol, PTH, calcitonin





#### Sodium

 Absolutely an essential nutrient, but has been "demonized" like cholesterol.

- Typical intakes way higher than what is needed in humans; added to livestock diets.
- Body usually gets rid of excess quite easily.
- Functions
  - Acid-base and osmotic balance of body fluidsMajor cation of extracellular fluid
    - Nerve transmission
    - Transport and absorption of sugars and amino acids

#### Sodium and Health

- High blood sodium is associated with high blood pressure and risk of heart disease
- However, high blood sodium rarely due to dietary excess.
- Again, genetics and other factors are involved.





# Did you know... Salt free means: Less than 5 mg sodium/serving Very low salt means: Less than 35 mg sodium/serving Low salt Less than 140 mg sodium/serving

## Dietary Sources & Bioavailability

- Table salt
- Monosodium glutamate
- Highly processed foods
- Condiments
- Some meats, dairy products, poultry & seafood
- Bioavailability
  - Affected by malabsorption











#### Overconsumption of Sodium Chloride

- Increased blood pressure
- Susceptible individuals
  - Elderly
  - African Americans
  - Those with:
    - Hypertension
    - Diabetes
    - Chronic kidney disease



Genetics

- Exercise
- Responsiveness of renin-angiotensinaldosterone system



#### Sulfur

- Component of amino acids
  - cystine, cysteine, and methionine for bioactive and structural proteins
     wool contains about 4% sulfur
- Chondroitin sulfate is a constituent of cartilage
- Deficiency is related to protein deficiency





# Metabolism & Regulation of Magnesium in the Body

- Stabilizes enzymes
- Neutralizes negatively charged ions
- Energy metabolism
- Cofactor for over 300 enzymes
  - DNA & RNA metabolism
- Nerve & muscle function





# Potassium (K): Dietary Sources & Bioavailability

 Legumes, potatoes, seafood, dairy products, meat, fruits/veg

BioavailabilityHigh





- Absorption in small intestine & colon
- Blood potassium regulated by:Kidneys
  - Aldosterone increases excretion
- Electrolyte
- Maintains fluid balance
- Muscle function
- Nerve function
- Energy metabolism



#### The Trace Minerals: An Overview

- Inorganic atoms or molecules
- Microminerals or trace elements
- < 100 mg/day needed</p>









#### Trace Elements (minerals)

- Need small amounts of these.
- Found in plants and animals.
- Content in plant foods depends on soil content (where plant was grown).
- They are difficult to quantify biochemically.
- Bioavailability often influenced by other dietary factors (especially other minerals)



#### Iron in the Body

- 70% of iron in body is functional; found in enzymes and other molecules
  - >80% of this found in red blood cells
- 30% of iron is in storage depots or transport proteins
- Iron absorption, transport, storage and loss is highly regulated.











- Iron deficiency
  - Increases production of transport proteins
  - Decreases ferritin production
- Adequate or excess iron
  - Decreases production of transport proteins



#### Iron Circulation, Uptake Into Cells, & Storage

Iron storage compounds

Ferritin

- Main storage form
- Hemosiderin
  - Long-term storage

#### Absorption, cont.

- Iron from animal sources much better absorbed than that from plant sources
- Absorption of iron from plant sources increased by
   Vitamin C
  - Meat in diet
- Absorption is decreased by
  - Phytates (grain products)
  - Polyphenols (tea, coffee)
  - Other minerals (calcium, zinc)



#### Iron Deficiency Anemia

- Public health concern in U.S. and around the world.
- Infants, children, pregnant and lactating women most at risk.

#### Symptoms

- $\downarrow$  hemoglobin concentration of blood
- ↓ red blood cell size
- Cognitive problems, poor growth, decreased exercise tolerance.

#### Iron (Fe): Dietary Sources

Heme iron

- Bound to a heme group
- Shellfish, beef, poultry, organ meats
- Makes up
  - Hemoglobin, myoglobin, cytochromes

#### Nonheme iron

- Green leafy vegetables, mushrooms, legumes, enriched grains
- ~85% of dietary iron





#### Inhibitors of Nonheme Iron Bioavailability

Chelators

Phytates

- In vegetables, grains, seeds
- Polyphenols
  - Some vegetables, tea, coffee, red wine

#### Functions of Iron

- Oxygen transport: hemoglobin
- Iron reservoir: myoglobin
- Cellular energy metabolism



#### Iron Reservoir: Myoglobin

- Found in muscle cells
- Heme group + protein subunit
- Releases oxygen to cells when needed for:
  - ATP production
  - Muscle contraction





#### Iron Deficiency

- Most common nutritional deficiency
- At-risk groups
  - Infants, growing children, pregnant women

Pica

#### Mild Iron Deficiency

#### Signs

- Fatigue
- Impaired physical work performance
- Behavioral abnormalities
- Impaired intellectual abilities in children
- Body temperature regulation
- Influences immune system

#### Severe Iron Deficiency: Iron-Deficiency Anemia

- Microcytic hypochromic anemia
  - Small, pale red blood cells
  - Inability to produce enough heme
  - Decreased ability to carry oxygen
  - Decreased ATP synthesis

#### Focus on Clinical Applications: Measuring Iron Status

- Serum ferritin concentration
  - < 12 micrograms/L</p>
- Total iron-binding capacity
- > 400 micrograms/dL
- Serum transferrin saturation
- < 16%</li>
- Hemoglobin concentration
  - Men < 130 g/L Women < 120 g/L
- Hematocrit

• Men < 39% Women < 36%





## Special Recommendations for Vegetarians & Endurance Athletes

Vegans

- Needs are 80% higher
- Iron supplements
- Heme + nonheme iron foods
- Endurance athletes
  - Increased blood loss in feces/urine
  - Chronic rupture of red blood cells in feet
  - Needs are 70% higher



## Absorption, Metabolism, & Regulation of Copper

- Absorbed in small intestine & stomach
- Influenced by Cu status
- Ceruloplasmin
- Excess incorporated into bile & eliminated in feces

#### Functions of Copper

- Cofactor for metalloenzymes in redox reactions:
  - ATP production
  - Cytochrome c oxidase
  - Iron metabolism
  - Neural function
  - Antioxidant function
    - Superoxide dismutase
  - Connective tissue synthesis





#### **Copper Deficiency**

Anemia

- Depigmentation of hair or wool
  - Black sheep are sometimes kept as indicators of marginal Cu deficiency
- Loss of wool crimp ("steely" wool)
- Bone disorders
- Central nervous lesions with muscular incoordination





#### Induced Copper Deficiency

- Caused by relatively high levels of Mo and/or S
- Site of interaction is in the rumen
  - Formation of insoluble Cu salts including sulfides and thiomolybdates
- Net effect is decreased Cu absorption

### Induced Copper Toxicity

- Occurs with "normal" dietary levels of Cu and "low" levels of Mo and S
- Accumulates in liver
- Sheep are more susceptible than cattle or pigs





#### **Iodine Deficiency**

- Goiter (less severe)
  - Enlarged thyroid gland due to body's attempt to increase thyroid hormone production
- Cretinism (more severe)
  - Severe iodine deficiency during pregnancy→serious problems in baby
    - Stunted growth, deaf, mute, mentally retarded.





# Absorption, Metabolism, & Regulation of Iodine

- Absorbed in small intestine & stomach
- Taken up by thyroid gland
- Thyroid-stimulating hormone regulates uptake







Lethargy

## Focus on Food: Iodine Deficiency & Iodine Fortification of Salt

- 1920s "Goiter Belt"
- Statewide campaigns
- Started providing iodized salt to children
- Goiter almost eliminated
- Current Public Health working to eradicate goiter internationally

#### **Iodine Toxicity**

- Hypothyroidism
- Hyperthyroidism
- Formation of goiters

#### Absorption, Metabolism, & **Regulation of Selenium**

- Most Se enters blood
- Incorporated into selenomethionine
- Makes selenoproteins
- Stored in muscles
- Maintenance of Se through excretion in urine



#### Selenium

- Protects cells from autooxidative damage
- Shares this role with vitamin E Important antioxidant
- Deficiencies

  - White muscle disease in lambs and calves Skeletal and cardiac myopathies
  - Exudative diathesis (hemorrhagic disease) in chicks





#### Selenium

- Toxicity
- Blind staggers or alkali disease
- Range between minimum requirement and maximum tolerable level is narrow
- Supplementation must be done with care!
  FDA regulations allow two forms of inorganic Se (Na selenite and Na selenate) to be used
  - 0.3 mg of supplemental Se/kg of DM is maximum
  - Organic form available

#### Selenium Deficiency & Toxicity

- Deficiency
  - Keshan disease
- Toxicity
  - Garlic-like odor of breath
  - Nausea
  - Vomiting
  - Diarrhea
  - Brittleness of teeth & fingernails



- Transported in blood to liver
- Excess excreted in urine & feces





## Manganese (Mn): Dietary Sources & Regulation

- Whole grains, pineapples, nuts, legumes, dark green leafy vegetables, water
- <10% absorbed</p>
- Excess incorporated into bile & excreted in feces





#### Molybdenum (Mo): Dietary Sources

- Food content depends on soil
- Legumes, grains, nuts
- Absorbed in intestine
- Circulated to liver via blood







## Absorption, Metabolism, & Regulation of Zinc

- Requires proteins to:
  - Transport zinc into enterocyte
     Metallothionine
  - Bind zinc within cell
- Excess excreted in feces
- Genetic influences

#### Acrodermatitis Enteroathica

- Zinc deficiency even with adequate amounts of dietary zinc
- Supplementation
- Infants
  - Growth failure
- Red/scaly skin
- Diarrhea
- Human Genome Project









- HDL
- Impaired copper status
- Nausea, vomiting, loss of appetite



#### Fluoride (F<sup>-</sup>): Dietary Sources, Bioavailability, & Regulation

- Not an essential nutrient
- Potatoes, tea, legumes, fish w/bones, toothpaste, added to drinking water
- American Dental Association
   Fluoridation 1-2 ppm
- Absorbed via small intestine
- Circulates in blood to liver & then teeth & bone
- Excess excreted in urine

#### Functions of Fluoride

- Part of bone & teeth matrix
- Stimulates maturation of osteoblasts
- Topical application decreases bacteria in mouth
  - Fewer cavities

#### Fluoride Deficiency & Toxicity

- Deficiency
  - None known
- Toxicity
  - GI upset, excessive production of saliva, watery eyes, heart problems, coma
  - Dental fluorosis
  - Skeletal fluorosis

#### Cobalt

 Known since 1930s that a wasting disease was associated with Co deficiency in plants and soils



- Starved for glucose!
  Vitamin B<sub>12</sub> was
- found to contain Co









#### Cobalt and Vitamin B<sub>12</sub>

- Injection of Co-deficient sheep and cattle with Vitamin B<sub>12</sub> was as effective as feeding Co in curing the disease
- Injection of Co had no effect
- Microbial synthesis of Vitamin B<sub>12</sub> was the key!

#### Functions of Cobalt and Vitamin B<sub>12</sub>

- Essential coenzyme for
  - Propionate metabolism
     methylmalonyl CoA to succinyl CoA
  - DNA synthesis
  - Bacterial synthesis of methionine

#### **Other Trace Minerals**

More research needed about:

- Nickel
- Aluminum
- Silicon
- Vanadium
- Arsenic
- Boron