Minerals

Inorganic elemental atoms that are essential nutrients.

Not changed by digestion or metabolism.

Functions of Minerals

- Some participate with enzymes in metabolic processes (cofactors)
- Some have structural functions (Ca, P in bone; S in keratin)
- Acid-base and water balance (Na, K, Cl)
- Nerve & muscle function (Ca, Na, K)
- Unique functions (e.g., heme, B₁₂, thyroid hormones)

The Major Minerals: an Overview

- Macrominerals
 - Humans need >100 mg/d
 - Calcium
 - Phosphorus
 - Magnesium
 - Sodium
 - Chloride
 - Potassium
Bioavailability, & Regulation of Major Minerals

- **Bioavailability**
 - Influenced by genetics, aging, nutritional status & other food compounds
- **Absorption**
 - Small intestine & large intestine
- **Regulation**
 - Kidneys & small intestine

Classification

- **Macro or Major minerals**
 - Sodium, potassium, magnesium, calcium, phosphorus, sulfur, chloride
 - Present in body tissues at concentrations >50 mg/kg (50 ppm)
- **Micro or Trace minerals**
 - Body needs relatively less
 - Chromium, manganese, iron, cobalt, molybdenum, copper, zinc, fluoride, iodine, selenium, silicon, tin, arsenic, nickel...
 - Present in body tissues at concentrations <50 mg/kg (50 ppm)

Nutritionally Important Minerals

<table>
<thead>
<tr>
<th>Macro</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>g/kg</td>
</tr>
<tr>
<td>Ca</td>
<td>15</td>
</tr>
<tr>
<td>P</td>
<td>10</td>
</tr>
<tr>
<td>K</td>
<td>2</td>
</tr>
<tr>
<td>Na</td>
<td>1.6</td>
</tr>
<tr>
<td>Cl</td>
<td>1.1</td>
</tr>
<tr>
<td>S</td>
<td>1.5</td>
</tr>
<tr>
<td>Mg</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Minerals in Foods

- Found in all food groups.
- More reliably found in animal products.
- Often other substances in foods decrease absorption (bioavailability) of minerals
 - Oxalate found in spinach, prevents absorption of most calcium in spinach.
 - Phytate, form of phosphorous in most plants makes it poorly available

Factors Affecting Requirements

- Physiological state/level of production
- Interactions with other minerals

Mineral Interactions
Factors Affecting Requirements
- Physiological state/level of production
- Interactions with other minerals
- Tissue storage
 - Bone, Liver
 - Specific proteins to hold and transport
- Form fed
 - Inorganic vs organic forms
 - Na selenite vs Na selenate vs selenomethionine

Deficiencies and Excesses
- Most minerals have an optimal range
 - Below leads to deficiency symptoms
 - Above leads to toxicity symptoms
- Mineral content of soils dictates mineral status of plants (i.e., feeds)
- May take many months to develop
 - Time impacted by body stores

Requirements and Toxicities

<table>
<thead>
<tr>
<th>Element</th>
<th>Species</th>
<th>Requirement, mg/kg</th>
<th>Toxic level, mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>Cattle</td>
<td>5-8</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Swine</td>
<td>6</td>
<td>250</td>
</tr>
<tr>
<td>Co</td>
<td>Cattle</td>
<td>0.06</td>
<td>60</td>
</tr>
<tr>
<td>I</td>
<td>Livestock</td>
<td>0.1</td>
<td>?</td>
</tr>
<tr>
<td>Se</td>
<td>Cattle</td>
<td>0.1</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>Horses</td>
<td>0.1</td>
<td>5-40</td>
</tr>
</tbody>
</table>
Calcium

- Most abundant mineral in animal tissues
 - 99% Ca in skeleton
 - Present in blood & other tissues
- Lots of functions
 - Bone structure
 - Nerve function
 - Blood clotting
 - Muscle contraction
 - Cellular metabolism

Food Sources

- Milk and dairy products
 - High amounts
 - High bioavailability (fortified with vitamin D)
- Green leafy vegetables
 - Poor absorption
- Fish with bones?
- Fortified juice/cereal

Both Ca and P are required for bone formation and other non-skeletal functions

Dietary ratio of 1:1 to 2:1 is good for most animals (exception is laying hen, 13:1; Ca:nonphytate phosphorus)
Calcium Absorption
- Dependent on Vitamin D
- Ca binding protein in intestinal epithelial cell
- Absorption depends on need
 - Particularly high during growth, pregnancy and lactation
- Bioavailability decreased by
 - Phytates (grains)
 - Oxalates
 - Wheat bran
 - Low estrogen levels (postmenopausal women)

Calcium Regulation
- Plasma Ca is regulated variable
 - Normal plasma concentration is 8-12 mg/dl

Calcium Regulation
- Three hormones involved in regulation
 - Vitamin D₃
 - from kidney
 - Parathyroid hormone (PTH)
 - from parathyroid gland
 - Calcitonin
 - from thyroid gland
- PTH and Vitamin D₃ act to increase plasma Ca, while calcitonin acts to decrease plasma Ca
Responses to Low Blood Calcium

- Parathyroid hormone (PTH) released
 - Stimulates conversion of inactive form of vitamin D to calcitrol
 - Increases in blood calcium
 - Small intestine
 - Resorption at kidneys & blood

Calcium Deficiencies

- Rickets
 - in growing animals
- Osteomalacia (osteoporosis)
 - in adult animals
- Milk fever (parturient paresis)
 - in lactating animals
Calcium and Bone Health

- Bone growth is greatest during "linear growth"
- Peaks out at around age 30
- Calcium in bones used as reservoir for other needs.
 - Maintains blood calcium homeostasis

Calcium and Osteoporosis

- Around age 40, bone breakdown exceeds formation.
- Ideally, want very high bone mass when this begins.
- By age 65, some women have lost 50% of bone mass.
Prevention is the Key

- Maintain adequate calcium and vitamin D intake—many recommend supplements?
 - Most are absorbed similarly
 - Costs vary widely
 - What's wrong with dairy products?
- Perform weight-bearing exercise
- Take estrogen supplements?

Structural Functions of Calcium: Bones & Teeth

- Bones
 - Osteoblasts
 - Bone formation
 - Osteoclasts
 - Breakdown of older bone
- Hydroxyapatite
 - Large crystal-like molecule

Regulatory Functions of Calcium

- Stimulates blood clotting
- Muscle contractions
- Transmission of nerve impulses
- Vision
- Regulation of blood glucose
- Cell differentiation
- Cofactor for energy metabolism
Focus on Foods: Milk, Calcium, & Chronic Disease

- Associations of reduced risk of chronic disease:
 - Degenerative diseases
 - Heart disease
 - Lowers blood pressure
 - Cancer
 - Breast, prostate, colon
 - Obesity

Calcium Toxicity

- Deposition in soft tissue
- Impaired kidney function
- Interference of other nutrient absorption
 - Iron & zinc

Phosphorous

- Functions
 - Similar to calcium
 - Vitally important in energy metabolism
 - ATP
 - sugar phosphates
 - Phosphoproteins
- Deficiencies include
 - Rickets or osteomalacia
 - Pica (depraved appetite) - chewing of wood, bones
 - Low fertility and poor milk production or growth?
Phosphorous
- Impact on environment has scientists revisiting nutritional requirements
 - Requirements are being lowered without any negative effects on reproduction or milk production
 - Bioavailability could be improved if phytate P can be reduced
 - Main source of P in grain

Phosphorus (P)
- Component of cell membranes & walls
- Found in all foods
- Structural & functional roles in body
- Energy metabolism

Metabolism & Regulation of Phosphorus in the Body
- Small intestine
 - Vitamin D-dependent active transport
 - Simple diffusion
- Concentrations controlled by:
 - Calcitriol, PTH, calcitonin
Functions of Phosphorus

- Phospholipids
- Component of:
 - DNA & RNA
 - ATP
- Protein synthesis
- Energy metabolism
- Maintenance of blood pH
- Forms hydroxyapatite

Phosphorus Toxicity

- Mineralization of soft tissues

Sodium

- Absolutely an essential nutrient, but has been “demonized” like cholesterol.
- Typical intakes way higher than what is needed in humans; added to livestock diets.
- Body usually gets rid of excess quite easily.
- Functions
 - Acid-base and osmotic balance of body fluids
 - Major cation of extracellular fluid
 - Nerve transmission
 - Transport and absorption of sugars and amino acids
Sodium and Health
- High blood sodium is associated with high blood pressure and risk of heart disease
- However, high blood sodium rarely due to dietary excess.
- Again, genetics and other factors are involved.

Sodium & Chloride
- Commonly found together in foods
 - Join via ionic bonds to form salt
- Added freely to foods during:
 - Processing
 - Cooking
 - A meal

Did you know...
- *Salt free* means:
 - Less than 5 mg sodium/serving
- *Very low salt* means:
 - Less than 35 mg sodium/serving
- *Low salt*:
 - Less than 140 mg sodium/serving
Dietary Sources & Bioavailability
- Table salt
- Monosodium glutamate
- Highly processed foods
- Condiments
- Some meats, dairy products, poultry & seafood
- Bioavailability
 - Affected by malabsorption

Regulation of Sodium & Chloride in the Body
- Small intestine
 - Sodium absorbed first
 - Chloride second
- Sodium
 - Absorbed with glucose
 - Also actively absorbed in colon
 - Water absorption

Regulation of Sodium in Blood
- [Diagram showing regulation of sodium in blood]
Functions of Sodium & Chloride
- Electrolytes
- Fluid balance
- Sodium
 - Nerve function
 - Muscle contraction
- Chloride
 - HCl production
 - Removal of carbon dioxide
 - Immune function

Sodium & Chloride Deficiencies
- Infants & children
 - Diarrhea and vomiting
- Athletes
 - Endurance sports
- Symptoms
 - Nausea, dizziness, muscle cramps, coma

Overconsumption of Sodium Chloride
- Increased blood pressure
- Susceptible individuals
 - Elderly
 - African Americans
 - Those with:
 - Hypertension
 - Diabetes
 - Chronic kidney disease
Focus on Food – Salt: Is It Really So Bad?

Salt sensitivity affected by:

- Genetics
- Exercise
- Responsiveness of renin-angiotensin-aldosterone system

Chlorine

Functions

- Acid-base and osmotic regulation
- HCl and chloride salts in gastric secretions

Deficiencies

- Metabolic alkalosis
 - Increased bicarbonate compensates for decreased Cl
- Growth retardation

Sulfur

Component of amino acids

- cystine, cysteine, and methionine for bioactive and structural proteins
 - wool contains about 4% sulfur
- Chondroitin sulfate is a constituent of cartilage
- Deficiency is related to protein deficiency
Magnesium

Functions
- Associated with Ca and P
- 70% of Mg in skeleton
- Enzyme activation (e.g., pyruvate dehydrogenase)

Deficiency
- Hypomagnesemic tetany (grass tetany)
 - early lactating cows on grass
 - poor nervous and muscular control

Magnesium (Mg): Dietary Sources & Bioavailability

- Green leafy vegetables, seafood, legumes, nuts, dairy products, chocolate, brown rice, whole grains

Bioavailability influenced by:
- Calcium
- Phosphorus

Metabolism & Regulation of Magnesium in the Body

- Stabilizes enzymes
- Neutralizes negatively charged ions
- Energy metabolism
- Cofactor for over 300 enzymes
 - DNA & RNA metabolism
- Nerve & muscle function
Magnesium Deficiency & Toxicity
- Deficiencies
 - Alcoholics
 - Abnormal nerve & muscle function
 - ? increase risk for CVD & type 2 diabetes
- Toxicity
 - Large dose supplements
 - Intestinal distress, alterations in heart beat

Potassium
- Functions
 - Regulation of osmotic and acid-base balance
 - Major cation of intracellular fluid
 - nerve and muscle excitability
 - Cofactor for several reactions in carbohydrate metabolism
 - Major salt in ruminant sweat
 - Increases requirement in heat stress
 - Typically high in forages

Potassium (K): Dietary Sources & Bioavailability
- Legumes, potatoes, seafood, dairy products, meat, fruits/veg
- Bioavailability
 - High
Regulation & Functions of Potassium in the Body

- Absorption in small intestine & colon
- Blood potassium regulated by:
 - Kidneys
 - Aldosterone increases excretion
- Electrolyte
- Maintains fluid balance
- Muscle function
- Nerve function
- Energy metabolism

Potassium Deficiency & Toxicity

- Deficiency
 - Diarrhea & vomiting
 - Diuretics
 - Hypokalemia
- Symptoms
 - Muscle weakness, constipation, irritability, confusion, insulin resistance, irregular heart function, decreased blood pressure, difficulty breathing
- Toxicity
 - Supplementation

The Trace Minerals: An Overview

- Inorganic atoms or molecules
- Microminerals or trace elements
- < 100 mg/day needed
Bioavailability & Regulation of Trace Minerals

- Bioavailability influenced by:
 - Genetics
 - Nutritional status
 - Nutrient interactions
 - Aging
 - Absorbed in small intestine
 - Circulated in blood
 - Deficiencies & toxicities rare
 - Except genetic disorders & environmental exposure

Functions of Trace Minerals in the Body

- Cofactors
 - Metalloenzyme
 - Components of nonenzymatic molecules
 - Provide structure to mineralized tissues
Trace Elements (minerals)
- Need small amounts of these.
- Found in plants and animals.
- Content in plant foods depends on soil content (where plant was grown).
- They are difficult to quantify biochemically.
- Bioavailability often influenced by other dietary factors (especially other minerals)

Iron
- Most common nutrient deficiency in the world.
- Functions
 - Oxygen transport via hemoglobin
 - Thus, necessary for ATP production!
 - Essential component of many enzymes
 - Immune function
 - Brain function
 - Iron deficiency/toxicity thought to slow mental development in kids.

Iron in the Body
- 70% of iron in body is functional; found in enzymes and other molecules
 - >80% of this found in red blood cells
- 30% of iron is in storage depots or transport proteins
- Iron absorption, transport, storage and loss is highly regulated.
Iron Absorption

- Primary regulator of iron homeostasis
 - 1-50% of iron is absorbed.
- If body needs more iron, it increases amount of “transferrin” an iron carrying protein.
- Iron can also be stored in another protein called “ferritin”

Iron Absorption

- Transport across
 - Brush border
 - Basolateral membrane
- Heme iron
 - Chemical modification not needed
- Nonheme iron
 - Reduced to ferrous form
- Ferritin

Effect of Iron Status on Iron Absorption
Effect of Iron Status on Iron Absorption

- Iron deficiency
 - Increases production of transport proteins
 - Decreases ferritin production
- Adequate or excess iron
 - Decreases production of transport proteins

Iron Circulation, Uptake Into Cells, & Storage

- Transferrin
 - Delivers iron to body cells
 - Transferrin receptors

Iron Circulation, Uptake Into Cells, & Storage

- Iron storage compounds
 - Ferritin
 - Main storage form
 - Hemosiderin
 - Long-term storage
Absorption, cont.
- Iron from animal sources much better absorbed than that from plant sources
- Absorption of iron from plant sources increased by
 - Vitamin C
 - Meat in diet
- Absorption is decreased by
 - Phytates (grain products)
 - Polyphenols (tea, coffee)
 - Other minerals (calcium, zinc)

Iron Deficiency Anemia
- Public health concern in U.S. and around the world.
- Infants, children, pregnant and lactating women most at risk.
- Symptoms
 - ↓ hemoglobin concentration of blood
 - ↓ red blood cell size
 - Cognitive problems, poor growth, decreased exercise tolerance.

Iron (Fe): Dietary Sources
- Heme iron
 - Bound to a heme group
 - Shellfish, beef, poultry, organ meats
 - Makes up
 - Hemoglobin, myoglobin, cytochromes
- Nonheme iron
 - Green leafy vegetables, mushrooms, legumes, enriched grains
 - ~85% of dietary iron
Bioavailability of Iron

Influenced by:
- Form
 - Heme
 - Ferric
 - Ferrous
- Iron status
- Presence/absence of other dietary components

Enhancers of Nonheme Iron Bioavailability
- Vitamin C & stomach acid
 - Convert ferric to ferrous iron
- Meat factor
 - Compound in meat, poultry, seafood
 - Meat + nonheme iron

Inhibitors of Nonheme Iron Bioavailability
- Chelators
 - Phytates
 - In vegetables, grains, seeds
 - Polyphenols
 - Some vegetables, tea, coffee, red wine
Functions of Iron

- Oxygen transport: hemoglobin
- Iron reservoir: myoglobin
- Cellular energy metabolism

Oxygen Transport: Hemoglobin

- Most abundant protein in red blood cells
- 4 protein subunits
- 4 iron-containing heme groups
- Delivers oxygen to cells
- Picks up carbon dioxide

Iron Reservoir: Myoglobin

- Found in muscle cells
- Heme group + protein subunit
- Releases oxygen to cells when needed for:
 - ATP production
 - Muscle contraction
Cellular Energy Metabolism
- Cytochromes
 - Heme-containing complexes
 - Function in electron transport chain
 - Allow conversion of ADP to ATP
- Iron as cofactor
 - Electron transport chain
 - Citric acid cycle
 - Gluconeogenesis

Other Roles of Iron
- Cytochrome P450 enzymes
 - Cofactor for antioxidant enzymes
 - Protects DNA, cell membranes, proteins
 - Cofactor for enzyme to make DNA

Iron Deficiency
- Most common nutritional deficiency
- At-risk groups
 - Infants, growing children, pregnant women
- Pica
Mild Iron Deficiency

- Signs
 - Fatigue
 - Impaired physical work performance
 - Behavioral abnormalities
 - Impaired intellectual abilities in children
 - Body temperature regulation
 - Influences immune system

Severe Iron Deficiency: Iron-Deficiency Anemia

- Microcytic hypochromic anemia
 - Small, pale red blood cells
 - Inability to produce enough heme
 - Decreased ability to carry oxygen
 - Decreased ATP synthesis

Focus on Clinical Applications: Measuring Iron Status

- Serum ferritin concentration
 - < 12 micrograms/L
- Total iron-binding capacity
 - > 400 micrograms/dL
- Serum transferrin saturation
 - < 16%
- Hemoglobin concentration
 - Men < 130 g/L Women < 120 g/L
- Hematocrit
 - Men < 39% Women < 36%
Basics of Iron Supplementation

- Ferrous Iron
 - Best absorbed
 - Other terms:
 - Ferrous fumarate
 - Ferrous sulfate
 - Ferrous gluconate
- Ferric Iron

Iron Toxicity

- Medicinal or supplemental iron
- Most common cause of childhood poisoning
- Symptoms
 - Vomiting, diarrhea, constipation, black stools
 - Death
- Excess deposited in liver, heart, muscles

Special Recommendations for Vegetarians & Endurance Athletes

- Vegans
 - Needs are 80% higher
 - Iron supplements
 - Heme + nonheme iron foods
- Endurance athletes
 - Increased blood loss in feces/urine
 - Chronic rupture of red blood cells in feet
 - Needs are 70% higher
Copper (Cu): Dietary Sources & Bioavailability

- Forms
 - Cupric
 - Cuprous
- Organ meats, shellfish, whole-grain products, mushrooms, nuts, legumes
- Bioavailability decreases with
 - Antacids
 - Iron

Absorption, Metabolism, & Regulation of Copper

- Absorbed in small intestine & stomach
- Influenced by Cu status
- Ceruloplasmin
- Excess incorporated into bile & eliminated in feces

Functions of Copper

- Cofactor for metalloenzymes in redox reactions:
 - ATP production
 - Cytochrome c oxidase
 - Iron metabolism
 - Neural function
 - Antioxidant function
 - Superoxide dismutase
 - Connective tissue synthesis
Copper Deficiency & Toxicity

- Deficiency
 - Hospitalized patients & preterm infants
 - Antacids

- Signs & Symptoms
 - Defective connective tissue, anemia, neural problems

- Toxicity
 - Rare

Copper

- Functions
 - Essential for normal absorption, transport and mobilization of iron and hemoglobin synthesis
 - Integral component of many enzymes (e.g., cytochrome oxidase)

- Stored in most tissues, especially liver

Copper Deficiency

- Anemia
- Depigmentation of hair or wool
 - Black sheep are sometimes kept as indicators of marginal Cu deficiency
- Loss of wool crimp (“steely” wool)
- Bone disorders
- Central nervous lesions with muscular incoordination
Induced Copper Deficiency
- Caused by relatively high levels of Mo and/or S
- Site of interaction is in the rumen
 - Formation of insoluble Cu salts including sulfides and thiomolybdates
 - Net effect is decreased Cu absorption

Induced Copper Toxicity
- Occurs with “normal” dietary levels of Cu and “low” levels of Mo and S
- Accumulates in liver
- Sheep are more susceptible than cattle or pigs
Iodine

- Function
 - Essential component of thyroid hormones
 - Important for regulation of body temperature, basal metabolic rate, reproduction and growth.
- Regulation in body
 - Almost all is absorbed.
 - Excess removed in urine.

Dietary Sources

- Seafoods
- Milk/dairy products
- Iodized salt

Iodine Deficiency

- Goiter (less severe)
 - Enlarged thyroid gland due to body's attempt to increase thyroid hormone production
- Cretinism (more severe)
 - Severe iodine deficiency during pregnancy ➔ serious problems in baby
 - Stunted growth, deaf, mute, mentally retarded.
Iodine Deficiency Disorders

- Cretinism
- Goiter

Absorption, Metabolism, & Regulation of Iodine

- Absorbed in small intestine & stomach
- Taken up by thyroid gland
- Thyroid-stimulating hormone regulates uptake

Low blood iodine concentration

Pituitary gland increases release of thyroid-stimulating hormone (TSH)

TSH stimulates the thyroid gland to take up iodine and produce thyroid hormones (T3 and T4)
Functions of Iodine

- Component of:
 - Thyroxine (T₄)
 - Triiodothyronine (T₃)
- Regulates energy metabolism, growth, development
- Signs of deficiency
 - Severe fatigue
 - Lethargy

Focus on Food: Iodine Deficiency & Iodine Fortification of Salt

- 1920s – “Goiter Belt”
 - Statewide campaigns
 - Started providing iodized salt to children
 - Goiter almost eliminated
 - Current - Public Health working to eradicate goiter internationally

Iodine Toxicity

- Hypothyroidism
- Hyperthyroidism
- Formation of goiters
Absorption, Metabolism, & Regulation of Selenium

- Most Se enters blood
- Incorporated into selenomethionine
- Makes selenoproteins
- Stored in muscles
- Maintenance of Se through excretion in urine

Functions of Selenium

- Component of glutathione peroxidase
 - Catalyzes removal of hydrogen peroxide

 \[
 \text{GSH + H}_2\text{O}_2 \rightarrow \text{GSSG + H}_2\text{O}
 \]

 \(\text{GSH} = \text{reduced glutathione}\)
 \(\text{GSSG} = \text{oxidized glutathione}\)

- Component of iodothyronine-5’- deiodinase
 - Converts \(T_4\) to \(T_3\)

- Improves killing ability of neutrophils
 - Reduces the prevalence and severity of mastitis

Selenium

- Protects cells from autooxidative damage
- Shares this role with vitamin E
 - Important antioxidant
- Deficiencies
 - White muscle disease in lambs and calves
 - Skeletal and cardiac myopathies
 - Exudative diathesis (hemorrhagic disease) in chicks
Selenium Content of Soils

Selenium
- Toxicity
 - Blind staggers or alkali disease
 - Range between minimum requirement and maximum tolerable level is narrow
 - Supplementation must be done with care!
- FDA regulations allow two forms of inorganic Se (Na selenite and Na selenate) to be used
 - 0.3 mg of supplemental Se/kg of DM is maximum
 - Organic form available

Selenium Deficiency & Toxicity
- Deficiency
 - Keshan disease
- Toxicity
 - Garlic-like odor of breath
 - Nausea
 - Vomiting
 - Diarrhea
 - Brittleness of teeth & fingernails
Chromium (Cr): Dietary Sources, Bioavailability, & Regulation
- Food content depends on soil
- Whole grains, fruits/veg, processed meats, beer, wine
- Bioavailability affected by:
 - Vitamin C
 - Acidic medications
 - Antacids
- Transported in blood to liver
- Excess excreted in urine & feces

Functions of Chromium
- Regulates insulin
- Growth & development
- Lab animals
 - Increases lean mass
 - Decreases fat mass
- Ergogenic aid
 - Chromium picolinate

Chromium Deficiency & Toxicity
- Deficiency
 - Hospitalized patients
 - Elevated blood glucose
 - Decreased insulin sensitivity
 - Weight loss
- Toxicity
 - Rare
 - Industrially released chromium
Manganese (Mn): Dietary Sources & Regulation
- Whole grains, pineapples, nuts, legumes, dark green leafy vegetables, water
- <10% absorbed
- Excess incorporated into bile & excreted in feces

Functions of Manganese
- Cofactor for metalloenzymes
 - Gluconeogenesis
 - Bone formation
- Energy metabolism
- Cofactor for superoxide dismutase

Manganese Deficiency & Toxicity
- Deficiency
 - Rare
 - Scaly skin, poor bone formation, growth faltering
- Toxicity
 - Rare
 - Mining
 - Liver disease
 - High water levels
Molybdenum (Mo): Dietary Sources
- Food content depends on soil
- Legumes, grains, nuts
- Absorbed in intestine
- Circulated to liver via blood

Functions of Molybdenum
- Redox reactions
 - Cofactor for several enzymes
 - Metabolism of:
 - Sulfur-containing amino acids
 - DNA & RNA
 - Detoxifying drugs in liver

Molybdenum Deficiency & Toxicity
- Deficiency
 - Rare
- Toxicity
 - No known effects in humans
 - Animals - disrupts reproduction
Zinc (Zn): Dietary Sources & Bioavailability

- Bioavailability influenced by:
 - Phytates
 - Iron
 - Calcium
 - Animal sources
 - Acidic substances

Absorption, Metabolism, & Regulation of Zinc

- Requires proteins to:
 - Transport zinc into enterocyte
 - Metallothioneine
 - Bind zinc within cell
 - Excess excreted in feces
 - Genetic influences

Acrodermatitis Enteropathica

- Zinc deficiency even with adequate amounts of dietary zinc
- Supplementation
- Infants
 - Growth failure
 - Red/scaly skin
 - Diarrhea
- Human Genome Project
Functions of Zinc
- Cofactor
 - RNA synthesis
- Stabilizes proteins that regulate gene expression
 - Zinc fingers
- Antioxidant
- Stabilizes cell membranes

Zinc Deficiency & Toxicity
- Deficiency
 - Decreases appetite
 - Increase morbidity
 - Decreases growth
 - Skin irritations, diarrhea, delayed sexual maturation
- Toxicity
 - Supplements
 - Poor immune function
 - Depressed levels of HDL
 - Impaired copper status
 - Nausea, vomiting, loss of appetite

Fluoride
- 99% is found in bones and teeth
- Function
 - To promote mineralization of calcium and phosphate.
 - Inhibits bacterial growth in mouth → decreases cavity formation.
Fluoride (F⁻): Dietary Sources, Bioavailability, & Regulation

- Not an essential nutrient
- Potatoes, tea, legumes, fish w/bones, toothpaste, added to drinking water
- American Dental Association
 - Fluoridation 1-2 ppm
- Absorbed via small intestine
- Circulates in blood to liver & then teeth & bone
- Excess excreted in urine

Functions of Fluoride

- Part of bone & teeth matrix
- Stimulates maturation of osteoblasts
- Topical application decreases bacteria in mouth
 - Fewer cavities

Fluoride Deficiency & Toxicity

- Deficiency
 - None known
- Toxicity
 - GI upset, excessive production of saliva, watery eyes, heart problems, coma
 - Dental fluorosis
 - Skeletal fluorosis
Cobalt
- Known since 1930s that a wasting disease was associated with Co deficiency in plants and soils
- Starved for glucose!
- Vitamin B₁₂ was found to contain Co

Vitamin B₁₂

Cobalt Deficient Areas of the US
Cobalt and Vitamin B₁₂

- Injection of Co-deficient sheep and cattle with Vitamin B₁₂ was as effective as feeding Co in curing the disease.
- Injection of Co had no effect.
- Microbial synthesis of Vitamin B₁₂ was the key!

Functions of Cobalt and Vitamin B₁₂

- Essential coenzyme for
 - Propionate metabolism
 - methylmalonyl CoA to succinyl CoA
 - DNA synthesis
 - Bacterial synthesis of methionine

Other Trace Minerals

- More research needed about:
 - Nickel
 - Aluminum
 - Silicon
 - Vanadium
 - Arsenic
 - Boron