
# **Starches**

- How much do we eat?
- Where does it come from?
- Characteristics of starch
- Starch digestion rate and extent
- Starch gelatinisation
- Glycaemic index of starchy foods
- Resistant starch
- Conclusions

# **Starch in western diets**



## Where does it come from? g starch per 100 g

- Flour, white
- Rice Bubbles
- Cracker biscuits
- Scone
- Sweet biscuits
- Bread, white
- Bread, wh'meal
- Crumpet
- Rice, white, cooked

| 73 | • | Cake, plain      | 30  |
|----|---|------------------|-----|
| 71 | • | Pasta, cooked    | 25  |
| 70 | • | Corn, sweet      | 17  |
| 51 | • | Potatoes, boiled | 13  |
| 49 | • | Sweet potato     | 13  |
| 45 | • | Baked beans      | 11  |
| 38 | • | Porridge         | 9   |
| 38 | • | Bananas          | 3-7 |
| 28 | • | Pumpkin          | 3   |

## **Starch characteristics**

- Plant energy reserve
- Storage organs:
  - seeds (cereals and legumes), tubers, unripe fruit (esp. banana)
- Starch granules
  - Unique in shape and size to each plant
    - Rice starch: small and angular
    - Potato starch: large and more spherical

#### Starch digestion Three phases

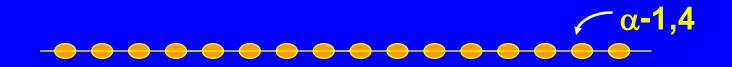
#### **1. Intraluminal phase**

- Starts in the mouth with salivary  $\alpha$ -amylase, continues in the stomach, despite low pH (15% total)
- Pancreatic  $\alpha$ -amylase secreted into duodenum
- Products are maltose, maltotriose and  $\alpha$ -limit dextrins

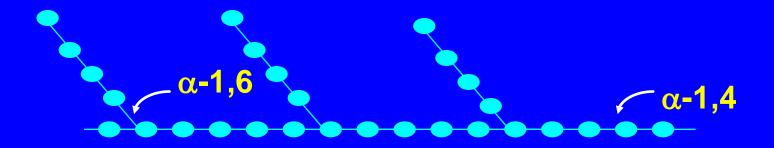
#### 2. Brush border phase

- isomaltase, maltase, glucoamylase, dextrinase

#### 3. Phase of glucose absorption


- Glucose actively absorbed across enterocytes
- Enters portal blood, then liver, then circulation

# **Rate of starch digestion**


#### **Depends on:**

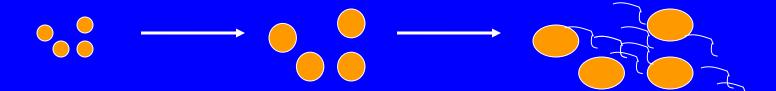
- rate of stomach emptying rate
  - Fat and protein slow it down
- susceptibility of starch to  $\alpha$ -amylase
  - Degree of gelatinisation
  - Amylose content
  - Physical entrapment in fibrous cell walls
- viscosity of luminal contents
  - More viscous means slower

Amylose and amylopectin amylose - linear molecule



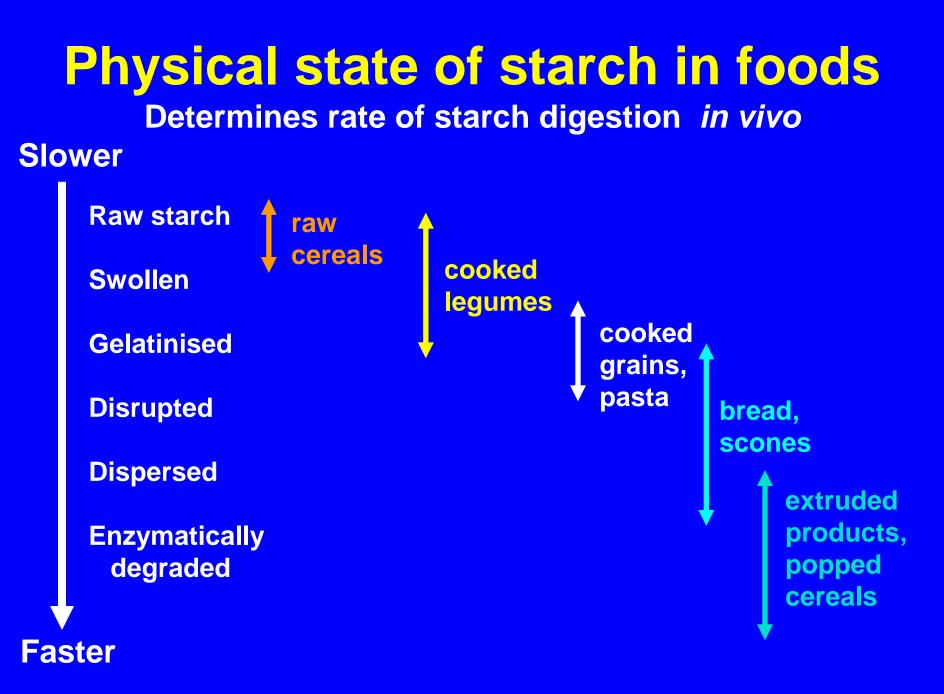
#### amylopectin - highly branched




(~ 20 residues)

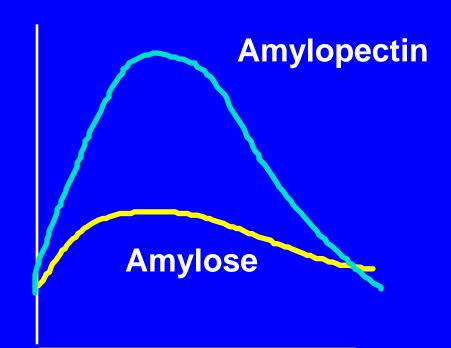
# **Amylose and amylopectin**

- Most plants contain starch ratio of – 80% amylopectin / 20% amylose
- More amylose (ie 30-60% of starch) in:
   Legumes, Basmati rice, Hi-Maize™
- Amylose tends to line up in rows
- Amylose gelatinises at a higher temp.
- Amylose is digested more slowly

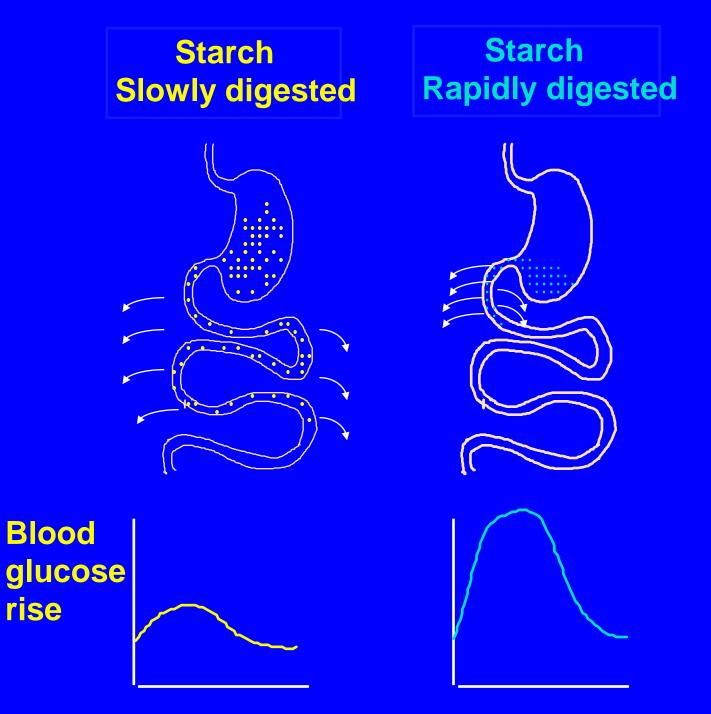

# Gelatinisation

 Starch granules swell in presence of water and heat = gelatinisation




- Causes increase in viscosity
- If starch conc'n is high, a gel will form

   Gravies, soups, custards, instant desserts
- Temp of gelatinisation depends on;
   size of granule, amylose content

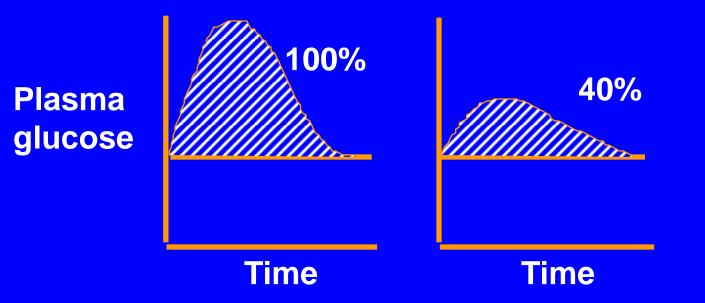



#### Blood glucose responses 50 g carbohydrate portions

[Blood Glucose] mM








#### Glucose and insulin responses Why are they relevant?

- Treatment of diabetes
  - hyperglycaemia and hypoglycaemia
- Prevention of type 2 diabetes
- Prevention of coronary heart disease
- Satiety, appetite control, weight reduction
- Sporting performance

# What is the glycaemic index?

- A ranking of carbohydrates in foods based on the blood glucose response to equivalent carbohydrate portions
- The reference food has by definition a GI of 100



## Most starchy foods have a high glycaemic index Glucose = 100

| • | White bread          | <b>70</b>       |
|---|----------------------|-----------------|
| • | Whole meal bread     | <b>69</b>       |
| • | Dark rye bread       | <b>86</b>       |
| • | Potatoes (boiled)    | <mark>88</mark> |
| • | Cornflakes           | <mark>84</mark> |
| • | Rice (Calrose brown) | <b>87</b>       |
| • | Crumpets             | <b>69</b>       |
| • | Wheatbix             | <mark>69</mark> |

# Relatively few starchy foods have a low GI

(Glucose = 100)

| • | Barley             | 25          |
|---|--------------------|-------------|
| • | Legumes            | <b>30's</b> |
| • | Pastas             | <b>40's</b> |
| • | Heavy grain breads | <b>40's</b> |
| • | Allbran™           | <b>42</b>   |
| • | Porridge oats      | 50          |

# **Resistant starch**

- Originally considered that cooked starch was <u>completely</u> digested in the small intestine
- But certain starch fractions can pass through the small intestine intact
- Some of it undergoes microbial fermentation in the large intestine
- Resistant starch is that portion of starch that escapes digestion in the small intestine
- Up to 20% of starch in white bread is resistant starch

#### RS content of starchy foods % total starch

| Legumes                             | 10   |
|-------------------------------------|------|
| Pumpernickel bread                  | d 10 |
| White bread                         | 5    |
| Cornflakes                          | 3    |
| Potatoes                            |      |
| <ul> <li>freshly cooked</li> </ul>  | 3    |
| – Cooled                            | 12   |
| <ul> <li>Cooled/reheated</li> </ul> | 8    |

# Implications of resistant starch

Improved glucose tolerance? Lowering of blood lipids? Blood pressure lowering??

**Metabolic effects** 

effects Colonic fermentation Lower pH in colon 11 Free fatty acids Increased faecal bulk 12 Bifidobacteria URISK of colon cancer?

Gastrointestinal

# Conclusions

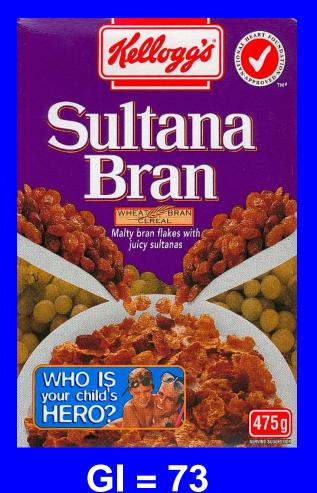
- New findings about starch:
  - Digested at different rates in different foods
  - Some of it completely resistant to digestion
- High GI of modern starchy foods has important implications for health and disease
- Resistant starch is quantitatively as important as fibre for colonic health

# How is the GI measured?

- Feed 50 g CHO portion of the food to 10 subjects eg 200g spaghetti
- Measure blood sugar at regular intervals

0, 15, 30, 45, 60, 90 and 120 mins

- Calculate 'area under the curve'
- Compare with area after reference food
   This is tested at another time express as %
- Calculate the average value for all 10 individuals


## Sugary foods have a moderate GI

**Glucose = 100** 

| • | Sucrose solution                        | 65 |
|---|-----------------------------------------|----|
| • | Fanta™                                  | 68 |
| • | Muesli bars                             | 61 |
| • | Life Savers <sup>™</sup>                | 70 |
| • | Chocolate milk (low fat)                | 34 |
| • | Yogurt (sweetened)                      | 33 |
| • | Icecream (Iow fat)                      | 50 |
|   | Median (range, 39 foods) = 58 (33 - 80) |    |

Brand Miller et al. Brit J Nutr 1995; 73:613

## **Breakfast cereals** High fiber is not necessarily low GI





 $\mathbf{GI} = 42$ 

GI of starchy foods

Difficult to guess from composition

GI is likely to be lower if there is:

- less processing
- high amylose-amylopectin ratio
- high amount of viscous fibre
- intact fibrous cell walls eg legumes
- low degree of gelatinisation of the starch
  - eg raw cereals, some biscuits
- large amount of fat and protein
- More fructose, fructose equivalentsz2

#### What are the potential benefits? Low GI diets for everyone

- lower day-long glucose and insulin levels
- improved insulin sensitivity
- improved blood lipid levels, higher HDL
- lower risk of heart disease
- lower risk of weight gain
- delay of ageing processes
- reduced tooth decay
- prolonged physical endurance

# New classification of starches

| Slowly                                                                               | Resistant                                                                                                          |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| digested                                                                             | starch                                                                                                             |
| Glucose                                                                              | Starch not                                                                                                         |
| released within                                                                      | hydrolysed                                                                                                         |
| 20 to 100 min                                                                        | after 120 min                                                                                                      |
| <ul> <li>Raw cereals</li> <li>Pasta</li> <li>Legumes</li> <li>High amylose</li></ul> | <ul> <li>Cooled potato</li> <li>Raw banana</li> <li>Amylose</li></ul>                                              |
| starches (cooked)                                                                    | (ungelatinised)                                                                                                    |
|                                                                                      | digested<br>Glucose<br>released within<br>20 to 100 min<br>• Raw cereals<br>• Pasta<br>• Legumes<br>• High amylose |

Englyst et al. Brit J Nutr 1996, 75:327