
MATLAB Tutorial

 1.An Introduction to MATLAB

 Starting and stopping

 Orientation: Windows and such (Not Finished)

 Command window

 Figure window(s)

 Editor window(s)

 Help window(s)

 Using MATLAB as a calculator

 Assigning values to variables

 Using MATLAB's built-in functions

 Using on-line help

 Suppressing output with the semicolon

 Setting the MATLAB path

 2.MATLAB Variables

 scalars

 Creating

 Assigning values

 Scalar operations

 vectors

 Creating

 Assigning values

 Addressing individual elements

 Colon notation

 Vector operations

 matrices (Not Finished)

 creating

 assigning values

 addressing individual elements

 colon notation

 matrix operations

 Strings (Not Finished)

 creating

 assigning values

 addressing individual elements

 colon notation

 string operations

 3.Plotting

 Line plots

 The basic plot command

 A simple line plot

 Logarithmic axis scaling

 Symbol plots

 Choosing symbol and line types

 A simple symbol plot

 Multiple curves on the same plot

 Plotting the data

 Labelling it with the legend command

 Loading Data into MATLAB for Plotting plots

 The load command

 More flexible data import with the readColData command

 Finishing Touches (Not Finished)

 Controlling the axis limits

 Multiple plots in a figure window

 Saving plots to a file

 Contour Plots (Not Finished)

 Surface Plots (Not Finished)

 Vector Plots (Not Finished)

 4.Programming MATLAB

 Scripts

 Scripts versus Functions

 Creating a script m-file

 Using (and abusing) scripts

 Side effects on the MATLAB workspace

 MATLAB Functions -- The Basics

 Functions versus Scripts

 Anatomy of a MATLAB function

 Calling MATLAB Functions

 Local Variables

 Flow Control

 MATLAB Functions -- Intermediate Features (Not Finished)

 Variable numbers of input and output parameters

 Global variables

 Debugging MATLAB Functions (Not Finished)

 Built-in debugging commands

 Debugging Strategies

 Improving the Speed of MATLAB Calculations

 Using vector operations instead of loops

 Pre-allocating memory for vectors and matrices

An Introduction to MATLAB

This section is an introduction to MATLAB by way of example. First some screen

shots of MATLAB are shown to help you get oriented to using MATLAB on your

computer. Then some simple MATLAB commands are presented that you are

encouraged to try. The syntax and general use of these commands are described in

detail later.

 Starting and stopping

 Windows and such

 Command window

 Figure window(s)

 Editor window(s)

 Using MATLAB as a calculator

 Assigning values to variables

 Using MATLAB's built-in functions

 On-line Help(!)

 Suppressing output with the semicolon

Starting and stopping

If you are using a DOS or Unix computer, start MATLAB by typing ``matlab'' at the

command prompt. If you are using a Macintosh, or a computer running Windows,

double click on the MATLAB icon. Refer to the MATLAB User's guide for additional

information to help you get started on your computer.

To stop MATLAB type ``quit'' at the MATLAB prompt, i.e.

 >> quit

Windows and such

MATLAB evolved as an interface to a powerful library of linear algebra routines

programmed in FORTRAN. Though it is a very modern computer package,

MATLAB's roots are still evident in the way that you interact with it. The most basic

way to get MATLAB to do work is to type a command in the Command Window.

Using MATLAB as a calculator

MATLAB can be used as an expression evaluator. To do this you simply type a

mathematical expression into the command window. The command window

prompt is >>. To enter an expression, type it after the prompt (correct any mistakes by

backspacing) and press return. MATLAB prints the result back to the

command window. For example, to ``evaluate'' pi type

 >> pi

MATLAB responds with

 ans =

 3.1416

pi is a built-in MATLAB variable. The preceding command is actually a request for

MATLAB to print the value of this variable.

Try the following examples

 >> sin(pi/4)

 >> 2^(log2(4))

 >> sqrt(9)

Assigning Values to Variables

MATLAB allows you create variables on the fly. To create a variable just use it on the

left hand side of an equal sign. The following examples show how to assign values to

three variables, x, y and z. It also shows the MATLAB response to the assignment

statements.

 >> x = 5

 x = 5

 >> y = pi/4

 y = 0.7854

 >> z = y + x^0.25

 z = 2.2807

Note that z exists only as a numerical value, not as the formula with which it was

created.

Use the who command to list the currently active variables. For the preceding session

this results in

 >> who

 Your variables are:

 ans x y z

 leaving 7433616 bytes of memory free.

To print the value of a variable that is already defined just type its name at the prompt.

 >> z

 z = 2.2807

The variables section describes how to work with MATLAB variables

Built-in Functions and Variables

MATLAB has many very powerful built-in functions. As the preceding example

demonstrated these functions include the familiar set found on many hand-held

calculators. Here is just a tiny sample of other MATLAB functions

You can also create your own functions. To do this you type MATLAB commands

into a plain text file. The file must have the extension ".m", and because of this

MATLAB functions are often referred to as "m-files". Creating and using functions is

described in the Programming Matlab section.

MATLAB also has some special variables and functions. You have already

encountered the ans variable which is automatically created whenever a mathematical

expression is not assigned to another variable.

The built-in eps variable is used as a tolerance for internal calculations. Initially eps is

equal to machine epsilon. You can reset the value of eps, but this is not recommended

unless you are very sure you know what you are doing.

The realmax, realmin, Inf and NaN built-in variables are used to handle floating point

exceptions. All numerical variables in MATLAB are stored as 32 bit floating point

numbers. This corresponds to ``double precision'' on most computers (supercomputers

and some high-end workstations being the exception). The Inf and NaN values appear

if a floating point exception occurred during the calculations.

In general you should not try to (re)assign the values of any built-in variables listed in

the table below.

On-line Help(!)

MATLAB provides on-line help for all built-in functions and commands. To browse a

list of help topics type

 >> help

To get help on a specific topic, for example the cosine function, type

 >> help cos

Using help is one way to learn about the variety of built-in functions. The help

command is most useful when you know the name of the function, but are unsure

how to use it. The MATLAB manuals provide cross-referenced and indexed

descriptions of all aspects of using MATLAB.

Suppressing Output with Semicolon

In the preceding examples it was useful to have MATLAB print the results of the

calculations. This is not always the case. MATLAB will print the result of every

assignment operation unless the expression on the right hand side is terminated with a

semicolon. Unlike C the semicolon is not required by MATLAB syntax.

Rather, it is a convenience that allows multiple statements to be executed without

printing the intermediate results. For example, most lines in m-files end with

semicolons because only the final results of the calculations are of interest.

To see how the semicolon works enter the following statements exactly as shown,

ending each line with a carriage return. Do not enter the prompt character, >>.

 >> x = pi/3;

 >> y = sin(x)/cos(x);

 >> z = y - tan(x);

 >> z

 >> y

The last two lines do not end in semicolons so MATLAB prints the results of

evaluating z and y. The the values of z and y were assigned in the y = and z =

statements. The last two lines merely printed the values of the expressions z and y.

Setting the MATLAB path

Setting the internal MATLAB path is such a universal concern that it has its very own

page. If you are just beginning to learn MATLAB the process of setting the

internal path may be confusing. Don't worry about it right away, but don't forget about

it either. There are links throughout these pages that point you back to the

path-setting information.

 MATLAB Variables

 Overview

 Scalars

 Creating

 Assigning values

 Scalar operations

 Vectors

 Creating

 Assigning values

 Addressing individual elements

 Colon notation

 Vector operations

 Matrices

 creating

 assigning values

 addressing individual elements

 colon notation

 matrix operations

 Strings

 creating

 assigning values

 addressing individual elements

 colon notation

 string operations

Overview of MATLAB Variables

This section describes the fundamental operations involved in the creation and use of

MATLAB variables. Detailed discussions of scalars, vectors, matrices, and strings are

provided in separate sections.

MATLAB variables are created when they appear on the left of an equal sign. The

generic statement

 >> variable = expression

creates the ``variable'' and assigns to it the value of the expression on the right hand

side. You do not need to define or declare a variable before it is used. Matrices do not

need to explicitly dimensioned, and MATLAB allows you to increase the size of a

matrix as you work. ``Holy FORTRAN, Batman!''

Advanced MATLAB users will point out that the speed of MATLAB functions can be

increased by pre-allocating memory for matrices and vectors. This and other

performance considerations are discussed elsewhere.

Variable names must begin with an alphanumeric letter. Following that, any number

of letters, digits and underscores can be added, but only the first 19 characters are

retained. MATLAB variable names are case sensitive so x and X are different

variables.

All numerical variables in MATLAB are matrices, a mathematical data type

corresponding to a two-dimensional array of numbers. Before performing any

calculations with a numeric variable, MATLAB prods and pokes into its contents.

MATLAB is very careful to follow the rigorous rules of linear algebra, and it only

allows legal operations between matrices, vectors and scalars.

But what about the statement that ``all numerical variables in MATLAB are

matrices''?

MATLAB keeps track of the dimension of each variable. Thus, the statement

 >> x = 2

creates a scalar variable x. In MATLAB, a scalar is a variable with one row and one

column.

A vector is a matrix with only one row or only one column. The distinction between

row and column vectors is crucial. When working with MATLAB you will need to

understand how to properly perform linear algebra using scalars, vectors and matrices.

MATLAB enforces rules on the use of each of these variables

MATLAB variables may also be strings, which are matrices of individual characters.

There is no typographical difference in appearance between numerical variables and

string variables. For example, the following statements assign a numerical value to x

and a string value to y.

 >> x = 5.2

 >> y = 'Bob'

The type of variable (numerical or string) is determined when the variable is created.

Complex Variables

Numerical matrix elements may be either real or complex. The type of element is

initially determined at the time the variable is created. However, matrix elements may

change from real to complex if, during an assignment, the right hand side expression

evaluates to a complex number. In this sense, matrix elements with real values are

simply complex numbers with zero imaginary parts.

 Scalar Variables

 Overview

 Creating

 Scalar operations

Scalars

In MATLAB a scalar is a variable with one row and one column. Scalars are the

simple variables that we use and manipulate in simple algebraic equations.

Creating scalars

To create a scalar you simply introduce it on the left hand side of an equal sign.

 >> x = 1;

 >> y = 2;

 >> z = x + y;

Scalar operations

MATLAB supports the standard scalar operations using an obvious notation. The

following statements demonstrate scalar addition, subtraction, multiplication and

division.

 >> u = 5;

 >> v = 3;

 >> w = u + v

 >> x = u - v

 >> y = u * v

 >> z = u/v

 Vectors

In MATLAB a vector is a matrix with either one row or one column. The distinction

between row vectors and column vectors is essential. Many programming errors are

caused by using a row vector where a column vector is required, and vice versa.

MATLAB vectors are used in many situations, e.g., creating x-y plots, that do not fall

under the rubric of linear algebra. In these contexts a vector is just a convenient data

structure. MATLAB still enforces the rules of linear algebra so paying attention to the

details of vector creation and manipulation is always

important.

 Creating Vectors

 Addressing individual elements

 Increasing the size of a vector

 Colon notation

 Vector operations

Creating vectors

To create a vector you simply introduce it on the left hand side of an equal sign. Of

course this means that the expression on the right side of the equal sign must evaluate

to a vector. There are numerous ways to actually create a vector, each one having

advantages in particular situations.

 1.using the the built-in functions ones, zeros, linspace, and logspace

 2.assigning a mathematical expressions involving vectors

 3.appending elements to a scalar

 4.using colon notation

Each method is useful and you will probably develop your own preferences. The first

two methods will be described in this section. The last two methods are

described in later sections.

Creating vectors with ones, zeros, linspace, and logspace

The ones, zeros linspace, and logspace functions allow for explicit creations of vectors

of a specific size and with a prescribed spacing between the elements. These functions

will be demonstrated by example without providing an exhaustive reference. Refer to

the MATLAB manual (or help pages) for details.

To create a vector with one of these functions you must (atleast initially) decide how

long do you want the vector to be. You must also decide whether the vector is a row

or column vector.

The ones and zeros functions have two arguments. The first is the number of rows in

the matrix you wish to create. The second is the number of columns. To create a row

or a column vector set the appropriate argument of ones and zeros to one.

To create a row vector of length 5, filled with ones use

 >> x = ones(1,5)

To create a column vector of length 5, filled with zeros use

 >> y = zeros(5,1)

The linspace and logspace functions create vectors with linearly spaced or

logarithmically spaced elements, respectively. Here are examples including the

MATLAB output.

 >> x = linspace(1,5,5)

 x =

 1 2 3 4 5

 >> y = logspace(1,4,4)

 y =

 10 100 1000 10000

The third argument of both linspace and logspace is optional. The third argument is

the number of elements to use between the the range specified with the first

and second arguments.

Assigning vector expressions to a vector

Once a vector has been created, it may be assigned to another vector. If the vector on

the left of the equal sign does not exist it is created to fit the expression on the

right hand side of the equal sign.

 >> x = zeros(1,5);

 >> y = x;

Addressing vector elements

Individual elements of a vector can be addressed with a Fortran like subscript. For

example

 >> x = linspace(11,15,5);

 >> x(2)

 ans =

 12

MATLAB automatically interprets the index as the appropriate row or column

Increasing the size of a vector (or scalar)

MATLAB allocates memory for all variables on the fly. This allows you to increase

the size of a vector simply by assigning a value to an element that has not been

previously used.

 >> x = linspace(21,25,5)

 x =

 21 22 23 24 25

 >> x(7) = -9

 x =

 21 22 23 24 25 0 -9

This augmentation should be avoided for vectors involved in computations where

speed is critical. Refer to Pre-allocating memory for vectors and matrices for a

discussion of the performance issues.

Automatic augmentation of vectors does not allow you to refer to elements that have

not yet been allocated.

 >> y = linspace(21,25,5)

 y =

 21 22 23 24 25

 >> y(7)

 ??? Index exceeds matrix dimensions.

Colon notation

MATLAB colon notation is a compact way to refer to ranges of matrix elements. It is

often used in copy operations and in the creation of vectors and matrices.

Colon notation can be used to create a vector as follows

 >> x = xbegin:dx:xend

or

 >> x2 = xbegin:xend

where xbegin and xend are the range of values covered by elements of the x vector,

and dx is the (optional) increment. If dx is omitted a value of 1 (unit

increment) is used. The numbers xbegin, dx, and xend need not be integers.

The preceding statements create row vectors. For example

 >> x = 1:5

 x =

 1 2 3 4 5

To create a column vector, append the transpose operator to the end of the vector-

creating expression

 >> y = (1:5)'

 y =

 1

 2

 3

 4

 5

Note that the colon expression needs to be enclosed in parentheses. Otherwise the

transpose operator is applied to the value, 5, before the vector is created. (see

Vector Transpose, below)

Using colon notation to create a vector requires you to specify the increment, whereas

using the linspace command requires you to specify the total number of

elements. The following commands show how to create the same vector with both

approaches.

 >> xbegin=1; xend=10; nx=5; dx=(xend-

xbegin)/(nx-1);

 >> x1 = linspace(xbegin,xend,nx);

 >> x2 = xbegin:dx:xend;

The vectors are the same only if the increment dx corresponds to an integer number of

elements. Prove this by repeating the preceding statments with nx=6;

When a colon expression appears in place of a vector (or matrix) index, the expression

is a kind of implied do loop. The expression

 istart:istop

refers to the range of numbers between istart and istop, inclusive. For example, the

following statements create a row vector, x, and then copies the third through

seventh elements of x into y.

 >> x = linspace(31,40,10);

 >> y = x(3:7)

 y =

 33 34 35 36 37

 >> y(3)

 ans =

 35

The expression, y = x(3:7), copies the third through seventh elements of x into the

first through fourth elements of y. If y did not already exist it is created by the

assignment.

Vector operations

Mathematical operations involving vectors follow the rules of linear algebra. Addition

and subtraction of vectors is performed with the + and - operators.

 Addition and subtraction

 Operations with scalars

 Vector transpose

 Vector Multiplication

 Element-wise vector operations

 Passing vectors to built-in functions

 Matrices

Matrices are the fundamental data type in MATLAB.

 Creating

 Assigning values

 Addressing individual elements

 Colon notation

 Matrix operations

Creating matrices

To create a matrix you simply introduce it on the left hand side of an equal sign. Of

course this means that the expression on the right side of the equal sign must evaluate

to a matrix.

Addressing matrix elements

Colon notation

Matrix operations

 Addition and subtraction

 Operations with scalars

 Operations with vectors

 Matrix Multiplication

 Element-wise matrix operations

 Passing matrices to built-in functions

Strings

Strings variables are primarily used for labeling output and passing the names of m-

files as arguments to other functions. While strings are not usually thought of as

fundamental to numerical analysis, strings can add a degree of flexibility and polish to

your MATLAB code.

 Creating

 Assigning values

 Addressing individual elements

 Colon notation

 Matrix operations

Creating strings

Strings are matrices with character elements. The normal rules of assignment and

variable creation apply. The simplest way to create a string is to use it on the left side

of an equal sign where the right side of the equal sign is an expression that evaluates

to a string.

String constants (literals) are enclosed in single quotes. The following example shows

how to create string variables.

 >> first = 'John';

 >> last = 'Coltrane';

 >> name = [first,' ',last]

The first two lines define two string variables. The last line creates a new string

variable from three other strings. This assignment is the most straightforward way to

concatenate two strings.

Addressing string elements

Colon notation

String operations

 Comparison

 Concatenation

 Reading strings from files

 Element-wise string operations

 Passing strings to built-in functions

 Plotting with MATLAB

MATLAB is very useful for making scientific and engineering plots. You can create

plots of known, analytical functions, you can plot data from other sources such as

experimental measurements, you can analyze data, perhaps by fitting it to a curve, and

then plot a comparison. MATLAB also has powerful built-in routines for drawing

contour and three-dimensional surface plots z = f(x,y) data.

MATLAB plotting commands are best illustrated by example. I have tried to make the

examples compact, while avoiding the trivial. The examples build on each other so it

is advisable to at least skim through the presenation in order. Jumping from link to

link will probably be more effective after you get a feel for the basic plotting

commands and the organization of these web pages.

To keep the network response relatively quick, I organized the plotting information

into several separate web pages. This page (the one you're reading now) serves as an

introduction and as an index. Whenever you click the ``Section Outline'' button at the

bottom of one subsidiary plotting pages you will be brought back to this page.

I've created one example to demonstrate each of the major plotting features. Both the

plotting commands and the MATLAB output are shown. The examples are available

as script files that are linked to these pages. Using these links you can easily download

the example scripts to your computer. If you are not familiar with Web browsers you

may want to refer to a brief set of instructions for help in downloading the scripts.

Loading your own data into MATLAB can sometimes be frustrating. I've presented a

detailed discussion how to do this in two ways. One way is to use the MATLAB load

command, which requires that your data be organized into columns with no labeling

text. Another way involves a custom MATLAB function (available for downloading)

that can strip heading text and read column labels from a plain text file.

MATLAB plot commands take vectors and matrices as input so you should be

familiar with manipulating these variable types. Refer to the vectors and matrices

sections for review. You should also know how to use colon notation to refer to parts

of matrices and vectors. And finally, since script files are used to automate the process

of creating plots you may want to skim ahead to the section on scripts.

Few things are more frustrating (to me at least) than having a plot of valuable data that

has no labels. When I grade homework or reports I ignore all plots that are not

properly labelled. I figure that if the author of the report did not bother to label the

plot, the data must not be very important. It's not my job to try to read the mind of the

person writing the report.

The following examples show how easy it is to not only create plots, but label them as

well.

Here's the Outline of the Plotting Section

 Line plots

 The basic plot command

 A simple line plot

 Logarithmic axis scaling

 Symbol plots

 Choosing symbol and line types

 A simple symbol plot

 Multiple curves on the same plot

 Plotting data stored in a separate file

 The load command

 More flexible data import with the readColData command

 Finishing Touches

 Controlling the axis limits

 Multiple plots in a figure window

 Saving plots to a file

 Contour plots

 Surface plots

 Vector plots

 Creating Line Plots with MATLAB

This page describes how to plot y = f(x) by connecting the data points with a line.

 The basic plot command

 A simple line plot

 Logarithmic axis scaling

The basic plot command

Two-dimensional line and symbol plots are created with the plot command. In its

simplest form plot takes two arguments

 >> plot(xdata,ydata)

where xdata and ydata are vectors containing the data. Note that xdata and ydata must

be the same length and both must be the same type, i.e., both must be

either row or column vectors. Additional arguments to the plot command provide

other options including the ability to plot multiple data sets, and a choice of colors,

symbols and line types for the data.

A simple line plot

Here are the MATLAB commands to create a simple plot of y = sin(3*pi*x) from 0 to

2*pi. For your convenience these commands are also stored in the

sin3xPlot.m script file. (Refer to ``help with downloading scripts'' for instructions on

downloading this script to your computer.)

 >> x = 0:pi/30:2*pi; % x vector, 0 <= x <= 2*pi, increments of pi/30

 >> y = sin(3*x); % vector of y values

 >> plot(x,y) % create the plot

 >> xlabel('x (radians)'); % label the x-axis

 >> ylabel('sine function'); % label the y-axis

 >> title('sin(3*x)'); % put a title on the plot

The effect of the labeling commands, xlabel, ylabel, and title are indicated by the text

and red arrows in the figure. Don't skimp on the labels!

Logarithmic axis scaling

Log-log and semi-log plots are created with commands that act just like the plot

command. These are summarized in the table below

 Commands for creating log-log and

 semilog plots

 Command Name

 Plot type

 loglog

 log(y) versus log(x)

 semilogx

 y versus log(x)

 semilogy

 log(y) versus x

 Creating Symbol Plots with MATLAB

This page describes how to plot y = f(x) by putting a symbol at each data point.

 Changing symbol or line types

 A simple symbol plot

Changing symbol or line types

The symbol or line type for the data can by changed by passing an optional third

argument to the plot command. For example

 >> plot(x,y,'o');

plots data in the x and y vectors using circles drawn in the default color (yellow), and

 >> plot(x,y,'r:');

plots data in the x and y vectors by connecting each pair of points with a red dashed

line.

The third argument of the plot command is a one, two or three character string of the

form 'cs', where 'c' is a single character indicating the color and 's' is a one or

two character string indicating the type of symbol or line. The color selection is

optional. Allowable color and symbols types are summarized in the following tables.

Refer to ``help plot'' for further information.

A simple symbol plot

This example shows you how to plot data with symbols. This type of plot is

appropriate, for example, when connecting data points with straight lines would give

the

misleading impression that the function being plotted is continuous between the

sampled data points.

Here are the MATLAB commands to create a symbol plot with the data generated by

adding noise to a known function. These commands are also in the script file

noisyData.m for you to download.

 >> x = 0:0.01:2; % generate the x-vector

 >> noise = 0.02*randn(size(x)); % and noise

 >> y = 5*x.*exp(-3*x) + noise; % Add noise to known function

 >> plot(x,y,'o'); % and plot with symbols

 >>

 >> xlabel('x (arbitrary units)'); % add axis labels and plot title

 >> ylabel('y (arbitrary units)');

 >> title('Plot of y = 5*x*exp(-3*x) + noise');

Note that the ``.*'' operator is necessary when multiplying the vector x by the vector

exp(-3*x). The preceding statments create the following plot.

 Putting Multiple Curves on the Same Plot

This page describes how to plot y1 = f1(x), y2 = f2(x), ... yn = fn(x) on the same plot,

and how to label these curves with the legend command.

 Passing multiple data pairs to the plot command

 The legend command

 An example of putting multiple curves on a plot

Passing multiple data pairs to the plot command

The plot command will put multiple curves on the same plot with the following

syntax

 plot(x1,y1,s1,x2,y2,s2,x3,y3,s3,...)

where the first data set (x1,y1) is plotted with symbol definition s1, the second data set

(x2,y2) is plotted with symbol definition s2, etc. The separate curves are

labeled with the legend command as demonstrated in the following example.

Note that x1, x2, ... etc need not be the same vector.

Each pair of vectors, (x1,y1), (x2,y2), etc. must have the same length. In other words

the length of x1 and y1 must be the same. The length of x2 and y2 must be the

same, but can be different from the length of x1 and y1.

The legend command

The legend is used to label the different data curves when more than one curve is

drawn on the same plot. The syntax is

 legend('label1','label2',...)

Where label1, etc are strings used to create the legend. This is best demonstrated by an

example, which follows.

An example of putting multiple curves on a plot

Here are the MATLAB commands to create a symbol plot with the data generated by

adding noise to a known function. The original function is drawn with a solid

line and the function plus noise is plotted with open circles. These commands are also

in the script file noisyDataLine.m for you to download.

 >> x = 0:0.01:2; % generate the x-vector

 >> y = 5*x.*exp(-3*x); % and the "true" function, y

 >> yn = y + 0.02*randn(size(x)); % Create a noisy version of y

 >> plot(x,y,'-',x,yn,'ro'); % Plot the true and the noisy

 >> xlabel('x (arbitrary units)'); % add axis labels and plot title

 >> ylabel('y (arbitrary units)');

 >> title('Plot of y = 5*x*exp(-3*x) + noise');

 >> legend('true y','noisy y');

Note that the ``.*'' operator is necessary when multiplying the vector x by the vector

exp(-3*x). The preceding statments create the following plot.

 Loading Data into MATLAB for Plotting

In addition to plotting values created with its own commands, MATLAB is very

useful for plotting data from other sources, e.g., experimental measurements.

Typically this data is available as a plain text file organized into columns. MATLAB

can easily handle tab or space-delimited text, but it cannot directly import files

stored in the native (binary) format of other applications such as spreadsheets.

The simplest way to import your data into MATLAB is with the load command.

Unfortunately, the load command requires that your data file contain no text

headings or column labels. To get around this restriction you must use more advanced

file I/O commands. Below I demonstrate both approaches with examples.

I've included an m-file to handle the more complex case of a file with an arbitrary

number of lines of text header, in addition to text labels for each column of data.

Though hardly a cure-all, this function is much more flexible than the load command

because it allows you to provide documentation inside your data file.

Here's an outline of this section

 The MATLAB load Command

 A simple plot of data from a file

 Plotting data from files with column headings

The MATLAB load Command

There is more than one way to read data into MATLAB from a file. The simplest,

though least flexible, procedure is to use the load command to read the entire

contents of the file in a single step. The load command requires that the data in the file

be organized into a rectangular array. No column titles are permitted. One

useful form of the load command is

 load name.ext

where ``name.ext'' is the name of the file containing the data. The result of this

operation is that the data in ``name.ext'' is stored in the MATLAB matrix variable

called name. The ``ext'' string is any three character extension, typically ``dat''. Any

extension except ``mat'' indicates to MATLAB that the data is stored as plain

ASCII text. A ``mat'' extension is reserved for MATLAB matrix files (see ``help load''

for more information).

Suppose you had a simple ASCII file named my_xy.dat that contained two columns of

numbers. The following MATLAB statements will load this data into the

matrix ``my_xy'', and then copy it into two vectors, x and y.

 >> load my_xy.dat; % read data into the my_xy matrix

 >> x = my_xy(:,1); % copy first column of my_xy into x

 >> y = my_xy(:,2); % and second column into y

You don't need to copy the data into x and y, of course. Whenever the ``x'' data is

needed you could refer to it as my_xy(:,1). Copying the data into ``x'' and ``y''

makes the code easier to read, and is more aesthetically appealing. The duplication of

the data will not tax MATLAB's memory for most modest data sets.

The load command is demonstrated in the following example.

If the data you wish to load into MATLAB has heading information, e.g., text labels

for the columns, you have the following options to deal with the heading text.

 Delete the heading information with a text editor and use the load command :-(

 Use the fegtl command to read the heading information one line at at time. You

can then parse the column labels with the strtok command. This technique

 requires MATLAB version 4.2c or later.

 Use the fscanf command to read the heading information.

Of these options, using fegtl and strtok is probably the most robust and convenient. If

you read the heading text into MATLAB, i.e., if you don't use the load

command, then you will have to also read the plot data with fscanf. The example,

Plotting data from files with column headings shows how this is done.

A simple plot of data from a file

This example show you how to load a simple data set and plot it.

The PDXprecip.dat file contains two columns of numbers. The first is the number of

the month, and the second is the mean precipitation recorded at the Portland

International Airport between 1961 and 1990. (For an abundance of weather data like

this check out the Oregon Climate Center)

Here are the MATLAB commands to create a symbol plot with the data from

PDXprecip.dat. These commands are also in the script file precipPlot.m for you to

download.

 >> load PDXprecip.dat; % read data into PDXprecip matrix

 >> month = PDXprecip(:,1); % copy first column of PDXprecip into month

 >> precip = PDXprecip(:,2); % and second column into precip

 >> plot(month,precip,'o'); % plot precip vs. month with circles

 >> xlabel('month of the year'); % add axis labels and plot title

 >> ylabel('mean precipitation (inches)');

 >> title('Mean monthly precipitation at Portland International Airport');

Although the data in the month vector is trivial, it is used here anyway for the purpose

of exposition. The preceding statments create the following plot.

 Finishing Touches for Plots

 Controlling the axis limits

 Multiple plots in a figure window

 Saving plots to a file

 Programming MATLAB

Soon after you become accustomed to using MATLAB interactively you will probably

grow tired of typing the same sequences of commands in order to perform

routine tasks. When this happens you will be ready to start programming in

MATLAB.

MATLAB ``programs'' are sequences of MATLAB commands saved in plain text

files. MATLAB requires that these files have the extension ``.m''. As a result

MATLAB programs are often referred to as m-files.

There are two types of MATLAB programs. These are scripts and functions.

Scripts

 Scripts versus Functions

 Creating a script m-file

 Recording a script with the diary command

 Using (and abusing) scripts

 Side effects on the MATLAB workspace

MATLAB Functions -- Intermediate Features

 Functions versus Scripts

 Creating a function m-file

 Structure of a MATLAB function

 Input and Output parameters

 Comment statements

 Function prologue -- providing help

 Calling MATLAB Functions

 Local Variables

 Flow Control

 if constructs

 for constructs

 while constructs

MATLAB Functions -- Intermediate Features

 Variable numbers of input and output parameters

 Global variables

Improving the Speed of MATLAB Calculations

 Using vector operations instead loops

 Pre-allocating memory for vectors and matrices

 MATLAB Scripts

Scripts are collections of MATLAB commands stored in plain text files. When you

type the name of the script file at the MATLAB prompt the commands in the

script file are executed as if you had typed them in from the keyboard. Script files

must end with the extension ``.m'' (for example ``myScript.m''), and often these

files are referred to as m-files.

Apart from syntax errors, perhaps the most common problem with using script files is

that MATLAB cannot locate the script file you wish to execute. This error can

be very frustrating to inexperienced MATLAB users because MATLAB gives the

error message

 ??? Undefined function or variable ...

and it is not immediately clear why the function is undefined when its m-file is clearly

visible to the user. The solution to this is to make sure that MATLAB's internal

path variable is set to the direction containing the script. Refer to the ``Setting the

MATLAB Path'' of this reference for help on setting the path.

Here's an outline of this section

 Scripts versus Functions

 Creating a script m-file

 Using (and abusing) scripts

 Side effects on the MATLAB workspace

Scripts versus Functions

Scripts are m-files containing MATLAB statements. MATLAB ``functions'' are

another type of m-file. The biggest difference between scripts and functions is that

functions have input and output parameters. Script files can only operate on the

variables that are hard-coded into their m-file. As you can see, functions much more

flexible. They are therefore more suitable for general purpose tasks that will be

applied to different data. Scripts are useful for tasks that don't change. They are also

a way to document a specific sequence of actions, say a function call with special

parameter values, that may be hard to remember.

There are more subtle differences between scripts and functions. A script can be

thought of as a keyboard macro: when you type the name of the script, all of the

commands contained in it are executed just as if you had typed these commands into

the command window. Thus, all variables created in the script are added to the

workspace for the current session. Furthermore, if any of the variables in the script file

have the same name as the ones in your current workspace, the values of

those variables in the workspace are changed by the actions in the script. This can be

used to your advantage. It can also cause unwanted side effects.

In contrast, function variables are local to the function. (The exception is that it's

possible to declare and use global variables, but that requires and explicit action by

the user.) The local scope of function variables gives you greater security and

flexibility. The only way (besides explicitly declared global variables) to get

information

into and out of a function is through through the variables in the parameter lists.

Creating a script m-file

Script files are usually created with a plain text editor. You can also use the MATLAB

diary command to record commands as you type

Creating scripts with a (plain) text editor

MATLAB m-files must be plain text files, i.e. files with none of the special formatting

characters included by default in files created by a word-processors. Most

word-processors provide the option of saving the file as plain text, (look for a ``Save

As...'' option in the file menu). A word-processor is overkill for creating

m-files, however, and it is usually more convenient to use a simple text editor, or a

``programmer's editor'' to create m-files. Most computer systems have several

text editors, though if you are running MATLAB on a personal computer only one of

these may be installed.

Most of the time when you are writing m-files you want to have the text editor and

MATLAB open at the same time. Since modern word-processors require lots of

system RAM it may not even be possible for you to use one for m-file development.

In this case a plain text editor will be your only option for m-file development.

Recording a script with the diary command

The MATLAB diary command is used to record an interactive session. To start

recording type

 >> diary filename

where ``filename'' is the name of the file to which the diary command copies all of the

commands enterred and all of the resulting output. To stop recording type

 >> diary off

In other words a typical session would be

 >> diary myDiary

 >> (some MATLAB commands)

 (some MATLAB output)

 >> diary off

The result is a plain text file called ``myDiary'' in the current working directory.

A diary file can be an easy way to create a script (or function) m-file. After you've

recorded the diary you delete the MATLAB output, including any error messages

and incorrect commands, and save the result as another file.

Make sure MATLAB knows the path to your script

MATLAB cannot execute a script unless it knows where to find its m-file. This

requires that the script be in the internal MATLAB path. Refer to ``Setting the

MATLAB Path'' for more information.

Using and abusing scripts

I suppose it's only a matter of personal preference, but I rarely use script files for

complex numerical calculations.

Scripts are useful for setting global behavior of a MATLAB session. This includes any

terminal settings for a remote serial line, or setting the parameters of the

Figure window for a certain size plot.

Sometimes a script is a useful starting point in developing a MATLAB function.

When I'm starting to write a new function, but I'm uncertain about the command

syntax or the actual sequence of commands I want to use, I'll use the diary command

to record my tests. After I get the correct command sequence I close the diary

file and open it with a text editor. This gives me a jump start on the function

development because I don't have to re-enter the commands. I just delete the incorrect

lines, add the function definition, and insert variables.

I've witnessed inexperienced MATLAB users who have become dependent on scripts

when functions would ultimately be easier to use. This typically occurs when

someone gets stuck on the function definition syntax, especially on the use of input

and output parameters. Rather than figure out how to properly pass parameters

to the function they repeatedly edit their script files to simulate the effect of variable

arguments. I hope this hypertext reference can help you avoid that fate. The

Programming Basics section contains several example function files that you can use

as starting points for your own functions (or scripts).

There is nothing wrong with using scripts, of course. Scripts and functions are two

tools for working with MATLAB programming. Using the appropriate tool for

the job will help you achieve your analysis goals more easily.

Side effects on the MATLAB workspace

Scripts can have unwanted side effects on the MATLAB workspace used in an

interactive session.

Excessive reliance on scripts can result in a confusing mix of variables in the

MATLAB workspace. This workspace is the collection of variables in the current

interactive session. Because script variables are added to the workspace it is quite

easy, in a long sequence of calculations, to a have variable changed by the script.

Sometimes this side effect is immediately obvious, for example a vector that you had

been using is reassigned as a scalar, leading to a syntax error. Other times only

a numerical value is changed. This later situation is obviously dangerous and can lead

to subtle errors in your calculation.

MATLAB Functions -- Basic Features

 Functions versus Scripts

 Anatomy of a MATLAB function

 Creating function m-files with a plain text editor

 Function Defintion

 Input and Output parameters

 Comment statements

 Some simple examples

 Calling MATLAB Functions

 Local Variables

 Flow Control

 if constructs

 Logical comparisons

 while constructs

 for constructs

Functions versus Scripts

See Scripts versus Functions.

Anatomy of a MATLAB function

MATLAB functions are similar to C functions or Fortran subroutines.

MATLAB programs are stored as plain text in files having names that end with the

extension ``.m''. These files are called, not surprisingly, m-files. Each m-file

contains exactly one MATLAB function. Thus, a collection of MATLAB functions

can lead to a large number of relatively small files.

One nifty difference between MATLAB and traditional high level languages is that

MATLAB functions can be used interactively. In addition to providing the

obvious support for interactive calculation, it also is a very convenient way to debug

functions that are part of a bigger project.

MATLAB functions have two parameter lists, one for input and one for output. This

supports one of the cardinal rules of MATLAB programming: don't change

the input parameters of a function. Like all cardinal rules, this one is broken at times.

My free advice, however, is to stick to the rule. This will require you to

make some slight adjustments in the way you program. In the end this shift will help

you write better MATLAB code.

Creating function m-files with a plain text editor

MATLAB m-files must be plain text files, i.e. files with none of the special formatting

characters included by default in files created by word-processors. Most

word-processors provide the option of saving the file as plain text, (look for a ``Save

As...'' option in the file menu). A word-processor is overkill for creating

m-files, however, and it is usually more convenient to use a simple text editor, or a

``programmer's editor''. For most types of computers there are several text

editors (often as freeware or shareware). Usually one plain text editor is included with

the operating system.

When you are writing m-files you will usually want to have the text editor and

MATLAB open at the same time. Since modern word-processors require lots of

system RAM it may not even be possible or practical (if you are working on a stand-

alone personal computer) for you to use a word-processor for m-file

development. In this case a simple, text editor will be your only option.

Function Defintion

The first line of a function m-file must be of the following form.

 function [output_parameter_list] = function_name(input_parameter_list)

The first word must always be ``function''. Following that, the (optional) output

parameters are enclosed in square brackets []. If the function has no

output_parameter_list the square brackets and the equal sign are also omitted. The

function_name is a character string that will be used to call the function. The

function_name must also be the same as the file name (without the ``.m'') in which the

function is stored. In other words the MATLAB function, ``foo'', must be

stored in the file, ``foo.m''. Following the file name is the (optional)

input_parameter_list.

There can exactly be one MATLAB function per m-file.

Input and Output parameters

The input_parameter_list and output_parameter_list are comma-separated lists of

MATLAB variables.

Unlike other languages, the variables in the input_parameter_list should never be

altered by the statements inside the function. Expert MATLAB

programmers have ways and reasons for violating that principle, but it is good practice

to consider the input variables to be constants that cannot be changed. The

separation of input and output variables helps to reinforce this principle.

The input and output variables can be scalars, vectors, matrices, and strings. In fact,

MATLAB does not really distinguish between variables types until some

calculation or operation involving the variables is performed. It is perfectly acceptable

that the input to a function is a scalar during one call and a vector during

another call.

To make the preceding point more concrete, consider the following statement

 >> y = sin(x)

which is a call to the built-in sine function. If x is a scalar (i.e. a matrix with one row

and one column) then y will be a scalar. If x is a row vector, then y will be a row

vector. If x is a matrix then y is a matrix. (You should verify these statements with

some simple MATLAB calculations.)

This situation-dependence of input and output variables is a very powerful and

potentially very confusing feature of MATLAB. Refer to the ``addtwo.m'' function

below for an example.

Comment statements

MATLAB comment statements begin with the percent character, %. All characters

from the % to the end of the line are treated as a comment. The % character

does not need to be in column 1.

Some simple examples

Here is a trivial function, addtwo.m

 function addtwo(x,y)

 % addtwo(x,y) Adds two numbers, vectors, whatever, and

 % print the result = x + y

 x+y

The addtwo function has no output parameters so the square brackets and the equal

sign are omitted. There is only one MATLAB statement, x+y, in the function.

Since this line does not end with a semicolon the results of the calculation are printed

to the command window.

The first two lines after the function definition are comment statements. Not only do

these statements describe the statements in the file, their position in the file

supports the on-line help facility in MATLAB. If the first line of a MATLAB function

definition is immediately followed by non-blank comment statements, then

those comment statements are printed to the command window when you type ``help

function_name". Try it with the addtwo function. MATLAB will print up until a

blank line or an executable statement, whichever comes first. Refer to the Function

prologues -- providing help section for more information.

To test your understanding of input and output variables, pass the following

definitions of x and y to the addtwo function. (To save space the x and y variables are

defined on the same line. You can enter these variables on the same line, as shown, or

use separate lines.)

 >> x = 2; y = 3;

 >> x = [2 3]; y = [4; 5];

 >> x = eye(3,3); y = -2*eye(3,3);

 >> x = 'Sue'; y = 'Bob'

 >> x = 'Jane'; y = 'Bob'

Here is another simple function, traparea.m, with three input parameters and one

output parameter. Since there is only one output parameter the square brackets

may be omitted.

 function area = traparea(a,b,h)

 % traparea(a,b,h) Computes the area of a trapezoid given

 % the dimensions a, b and h, where a and b

 % are the lengths of the parallel sides and

 % h is the distance between these sides

 % Compute the area, but suppress printing of the result

 area = 0.5*(a+b)*h;

Note that there is a blank line between the comment statements that describe the

function and the single comment statement that describes the calculation of area.

The comment statement beginning ``Compute the area...'' will not be printed if you

type ``help traparea''. Also note that there is no ``return'' statement needed.

(There is a MATLAB return statement, but it is not needed here.) The output variable,

area, is defined in the first line of the file. The value assigned to area is

returned to the calling function or the command window.

Finally, here is another simple function, cart2plr.m, with two input parameters and

two output parameters.

 function [r,theta] = cart2plr(x,y)

 % cart2plr Convert Cartesian coordinates to polar coordinates

 %

 % [r,theta] = cart2plr(x,y) computes r and theta with

 %

 % r = sqrt(x^2 + y^2);

 % theta = atan2(y,x);

 r = sqrt(x^2 + y^2);

 theta = atan2(y,x);

The comment statements have empty lines, but these will be printed if you type ``help

cart2plr''.

Make sure MATLAB knows the path to your function

MATLAB cannot execute a function unless it knows where to find its m-file. This

requires that the function be in the internal MATLAB path. Refer to ``Setting the

MATLAB Path'' for more information.

Calling MATLAB Functions

 use or ignore return arguments (see also nargin/nargout)

 suppress output

Local Variables

Unless explicitly declared to be global variables, all variables appearing in a

MATLAB function are local to that function.

Flow Control

MATLAB supports the basic flow control constructs found in most high level

programming languages. The syntax is a hybrid of C and Fortran and I often create

polyglot statements which lead to the joyless task of squashing trivial bugs.

if constructs

MATLAB supports these variants of the ``if'' construct

 if ... end

 if ... else ... end

 if ... elseif ... else ... end

Here are some examples based on the familiar quadratic formula. (n.b. This is not an

endorsement of the code logic, just an easy to follow example of the ``if''

constructs.)

A simple warning

 >> d = b^2 - 4*a*c;

 >> if d<0

 >> disp('warning: discriminant is negative, roots are imaginary');

 >> end

or a warning plus extra notification

 >> d = b^2 - 4*a*c;

 >> if d<0

 >> disp('warning: discriminant is negative, roots are imaginary');

 >> else

 >> disp('OK: roots are real, but may be repeated');

 >> end

or, no secrets whatsoever

 >> d = b^2 - 4*a*c;

 >> if d<0

 >> disp('warning: discriminant is negative, roots are imaginary');

 >> elseif d==0

 >> disp('discriminant is zero, roots are repeated');

 >> else

 >> disp('OK: roots are real and distinct');

 >> end

Careful inspection of the preceding statements reveals that

 no semicolon is needed to suppress output at the end of lines containing if, else,

elseif or endif

 elseif has no space between ``else'' and ``if''

 the end statement is required

 the ``is equal to'' operator has two equals signs (see Logical Comparisons below)

Indentation of ``if'' blocks is not required, but considered good style.

The compact if

If you read tightly coded m-files (e.g., many of the built-in MATLAB functions) you

will discover a variant of the if ... end construct that is written on one line.

Here's an example

 if x<0, disp('imaginary'); end

Notice the comma between the x<0 and the disp(...). Apparently the comma tells the

MATLAB interpretter that the conditional test has ended. To my

knowledge this is only place where a statement (OK, part of a statement) ends with a

comma. It's just one of those quirks that true believers come to use without

hesitation.

Logical comparisons

The preceding table lists the logical comparison operators used in MATLAB. Note

that these operators can be used in assignment statements, as illustrated in this

example

 enough = xnew-xold < delta

 if ~enough

 stepSize = stepSize/2;

 end

The first statement assigns the value of the logical comparison to the variable

``enough''. If the comparison on the right hand side evaluates to be true, then enough

is given the value 1. If the comparison evaluates to be false, then enough is given the

value 0. In the subsequent if statement, enough = 1 is true, and enough =

0 is false.

Binary and unary logical operators

Binary operators take two arguments (operands). Unary operators take one argument.

The && operator (read ``and'' operator) takes two logical expressions and returns

``true'' if both expressions are true, and ``false'' otherwise.

The || operator (read ``or'' operator) takes two logical expressions and returns ``true'' if

either of the expressions are true, and ``false'' only if both expressions are

false. The possible outcomes of && and || operations are summarized in the following

truth table.

The ~ operator (read ``not'') takes only one logical expression and returns the opposite

(negation) of that expression. Consider the following code

 a = 2; b = 3;

 asmall = a < b; % asmall is ``true''

 if ~asmall

 disp('a is greater than b')

 end

Since a is less than b the if ~asmall block is not executed because ~asmall is false.

while constructs

The syntax of the while construct is

 while expression

 do something

 end

where ``expression'' is a logical expression. The ``do something'' block of code is

repeated until the expression in the while statement becomes false.

Here is an example

 i = 2;

 while i<8

 i = i + 2

 end

Executing the preceding block of code results in the following output to the command

window

 i = 4

 i = 6

 i = 8

(The output has been adjusted to take up less space. MATLAB likes to sprawl its

printout over several lines.) Note that no disp or fprintf statement was

needed in the preceding block because the i = i + 2 statement did not end in a

semicolon.

for constructs

The for construct is used to create a loop, usually over a fixed range of steps

 sum = 0;

 for i=1:length(x)

 while i<10

 sum = sum + abs(x(i));

 end

 MATLAB Functions -- Intermediate Features

It's highly subjective to say just what constitutes an ``intermediate'' versus a ``basic''

programming feature.

The preceding section, Programming Basics, covers what you need to get started with

writing MATLAB functions. Soon after you get comfortable with the process

of using and writing functions, I believe you will want to incorprate the features

described below.

 Function prologues -- providing help

 Variable Number of Input and Output Arguments

 Global Variables

 Using eval to provide an error trap

Function prologues -- providing help

If the first line of a MATLAB function definition is immediately followed by non-

blank comment statements, then those comment statements are printed to the

command window when you type ``help function_name". Experiment with this

feature by getting help for MATLAB built-in functions.

For all but the most trivial MATLAB functions, I usually write an entensive function

prologue that will be returned by the help facility. The prologue contains a brief

statement of the what the function does, a synopsis of how the function may be called,

and complete descriptions of all input and output parameters.

As an example, here is the prologue to readColData.m function, which is described in

the section Plotting data from files with column headings .

 function [labels,x,y] = readColData(fname,ncols,nhead,nlrows)

 % readColData reads data from a file containing data in columns

 % that have text titles, and possibly other header text

 %

 % Synopsis:

 % [labels,x,y] = readColData(fname)

 % [labels,x,y] = readColData(fname,ncols)

 % [labels,x,y] = readColData(fname,ncols,nhead)

 % [labels,x,y] = readColData(fname,ncols,nhead,nlrows)

 %

 % Input:

 % fname = name of the file containing the data (required)

 % ncols = number of columns in the data file. Default = 2. A value

 % of ncols is required only if nlrows is also specified.

 % nhead = number of lines of header information at the very top of

 % the file. Header text is read and discarded. Default = 0.

 % A value of nhead is required only if nlrows is also specified.

 % nlrows = number of rows of labels. Default = 1

 %

 % Output:

 % labels = matrix of labels. Each row of lables is a different

 % label from the columns of data. The number of columns

 % in the labels matrix equals the length of the longest

 % column heading in the data file. More than one row of

 % labels is allowed. In this case the second row of column

 % headings begins in row ncol+1 of labels. The third row

 % column headings begins in row 2*ncol+1 of labels, etc.

 %

 % NOTE: Individual column headings must not contain blanks

 %

 % x = column vector of x values

 % y = matrix of y values. y has length(x) rows and ncols columns

Variable Number of Input and Output Arguments

 Not Done

Global Variables

 Not Done

Using eval to provide an error trap

In version 4.1 or later of MATLAB the eval command can be used to provide an error

trap. This is one way to recover more gracefully from an error condition,

especially if the error occurs in a built-in MATLAB function.

The syntax of the eval error trap is

 eval('desired','fallBack')

where desired is the m-file you wish to execute and fallBack is the name of the m-file

(or MATLAB command) that is executed if an error occurs in the

desired function.

Normally when MATLAB encounters an error it prints a message and the name of the

function in which the error occured. It then stops. With the eval error trap,

MATLAB will continue execution. Presummably some meaningful recovery

operation is provided by the fallBack function or text. If all you want to do is provide

and error message use, the MATLAB error function instead.

Refer to the version 4.1 (or version 4.2) release notes for a nice example of using eval

and lasterr to build an error trap.

 Improving the Speed of MATLAB Calculations

Large scale numerical calculations can put heavy demands on your computer. Some

software companies argue that they do not have to do a good job of

performance tuning because computer hardware is advancing so rapidly. While it may

be possible to foist slug-like word-processors onto the average computer

user, engineers and scientists are usually less tolerant of poorly designed and

implemented software.

In technical markets the gains in computing performance raise, not lower, the

expectations of users. It is often the case that improved hardware and software allows

simulations to be run with more detail, which often translates to more realistic results.

MATLAB is an interpretted language. At first this would seem to make it

inapproapriate for large scale scientific computing. The power of MATLAB is

realized

with its extensive set of libraries which are compiled or are carefully coded in

MATLAB to utilize ``vectorization''. The concept of vectorization is central to

understanding how to write efficient MATLAB code.

Vectorized code takes advantage, wherever possible, of operations involving data

stored as vectors. This even applies to matrices since the columns (or rows) of a

matrix are usually stored in contiguous locations in the computer's RAM. The speed

of a numerical algorithm in MATLAB is very sensitive to whether or not

vectorized operations are used.

This section presents some basic considerations to writing efficient MATLAB

routines. It is possible, of course, to become obsessed with performance and waste

man-hours of programming time in order to save a few seconds of execution time.

The ideas presented below require little extra effort, yet can yield significant

speed improvements. Once you understand how to use these procedures they will

become natural parts of your MATLAB programming style.

For a more advanced discussion of vectorization techniques be sure to check the

Mathworks Home Page and in particular their technical notes

The following topics are covered in this section

 Using vector operations instead of loops

 Pre-allocating memory for vectors and matrices

Using vector operations instead of loops

Consider the following loop, translated directly from Fortran or C

 >> dx = pi/30;

 >> nx = 1 + 2*pi/dx;

 >> for i = 1:nx

 >> x(i) = (i-1)*dx;

 >> y(i) = sin(3*x(i));

 >> end

The preceding statements are perfectly legal MATLAB statements, but they are an

inefficient way to create the x and y vectors. Recall that MATLAB allocates

memory for variables on the fly. On the first time through the loop (i=1), MATLAB

creates two row vectors x and y, each of length one. On each subsequent pass

through the loop MATLAB appends new elements to x and y. Not only does this incur

extra overhead in the memory allocation calls, the elements of x and y will

not be stored in contiguous locations in RAM. Thus, any subsequent operations with x

and y, even though these operations may be vectorized, will take a

performance hit because of memory stride overhead.

The preferred way to create the same two x and y vectors is with the following

statements.

 >> x = 0:pi/30:2*pi

 >> y = sin(3*x);

The first statement creates the row vector, x, with 1 + pi/15 elements stored in

contiguous locations in RAM. The second statement creates a new (matrix) variable,

y, with the same number of rows and columns as x. Since x is a row vector, as

determined by the preceding step, y is also a row vector. If x were, for example, a 5

by 3 matrix, then y = sin(3*x) would create a 5 by 3 matrix, y.

MATLAB is designed to perform vector and matrix operations efficiently. To take

maximum advantage of the computer hardware at your disposal, therefore, you

should use vectorized operations as much as possible.

Pre-allocating memory for vectors and matrices

Though MATLAB will automatically adjust the size of a matrix (or vector) it is

usually a good idea to pre-allocate the matrix. Pre-allocation incurs the cost of

memory allocation just once, and it guarantees that matrix elements will be stored in

contiguous locations in RAM (in row major order?).

Consider the following (admitedly artificial) sequence of statements.

 >> dx = pi/30;

 >> nx = 1 + 2*pi/dx;

 >> nx2 = nx/2;

 >> for i = 1:nx2

 >> x(i) = (i-1)*dx;

 >> y(i) = sin(3*x(i));

 >> end

 >> for i = nx2+1:nx

 >> x(i) = (i-1)*dx;

 >> y(i) = sin(5*x(i));

 >> end

Since we know the size of x and y, a priori, we can pre-allocate memory for these

vectors. Pre-allocation involves creating a matrix (or vector) with one vectorized

statement before any of the matrix elements are referenced individually. The ones and

zeros functions are typically used to pre-allocate memory.

Here is an improvement of the preceding statements with pre-allocation of memory

for x and y.

 >> dx = pi/30;

 >> nx = 1 + 2*pi/dx;

 >> nx2 = nx/2;

 >> x = zeros(1,nx); % pre-allocate row-vectors, x

 >> y = zeros(1,nx); % and y

 >> for i = 1:nx2

 >> x(i) = (i-1)*dx;

 >> y(i) = sin(3*x(i));

 >> end

 >> for i = nx2+1:nx

 >> x(i) = (i-1)*dx;

 >> y(i) = sin(5*x(i));

 >> end

The statements x(i) = ..., and y(i) = ... still do not take advantage of possibilities for

vectorization, but at least the elements of x and y are stored

contiguously in RAM. We will improve the efficiency of the loops shortly. First,

however, note that we could have written the pre-allocation statements as

 >> x = zeros(1,nx); % pre-allocate row-vectors, x

 >> y = x; % and y

The statement y = x does not mean that y will stay equal to x. It simply creates another

matrix y with the same ``shape'' as x. Understanding that pre-allocation is

important for efficiency will help you understand these apparently confusing twists of

MATLAB programming logic.

We can further improve our loops by pulling the assignment of x out of the loops.

 >> x = 0:pi/30:2*pi; % vectorized calculation of x

 >> nx = length(x);

 >> nx2 = nx/2;

 >> y = x; % pre-allocate memory for y

 >> for i = 1:nx2

 >> y(i) = sin(3*x(i));

 >> end

 >> for i = nx2+1:nx

 >> y(i) = sin(5*x(i));

 >> end

Finally, being obsessed with performance, we observe that the calculation of y can

also be vectorized. To do this we use the colon notation to refer to segments of

the x and y vectors.

 >> x = 0:pi/30:2*pi; % vectorized calculation of x

 >> nx = length(x);

 >> nx2 = nx/2;

 >> y = x; % pre-allocate memory for y

 >> y(1:nx2) = sin(3*x(1:nx2)); % compute first part of y

 >> y(nx2+1:nx) = sin(5*x(nx2+1:nx)); % and the second part

To those new to MATLAB programming, the preceding statements may appear

unecessarily obfuscated. The comment statements, of course, help, but the logic

behind the logic comes from a true understanding of vectorization. Once you get the

hang of MATLAB's colon notation you too will come to write code like this.

Whenever the speed of MATLAB code is important, there is no substitute for

vectorization.

