

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The Wire

July 30, 2002

The Wire

schematics

physical

© Digital Integrated Circuits^{2nd}

Interconnect Impact on Chip

Wire Models

All-inclusive model

Capacitance-only

© Digital Integrated Circuits^{2nd}

Impact of Interconnect Parasitics

Interconnect parasitics

- reduce reliability
- affect performance and power consumption

Classes of parasitics

- Capacitive
- Resistive
- Inductive

Nature of Interconnect

INTERCONNECT

© Digital Integrated Circuits^{2nd}

Capacitance of Wire Interconnect

Capacitance: The Parallel Plate Model

$$C_{int} = \frac{\mathcal{E}_{di}}{t_{di}}WL \qquad S_{Cwire} = \frac{S}{S \cdot S_L} = \frac{1}{S_L}$$

© Digital Integrated Circuits^{2nd} Wires

Permittivity

Material	ε _r
Free space	1
Aerogels	~1.5
Polyimides (organic)	3-4
Silicon dioxide	3.9
Glass-epoxy (PC board)	5
Silicon Nitride (Si ₃ N ₄)	7.5
Alumina (package)	9.5
Silicon	11.7

Fringing Capacitance

(a)

© Digital Integrated Circuits^{2nd}

Fringing versus Parallel Plate

(from [Bakoglu89])

© Digital Integrated Circuits^{2nd}

Interwire Capacitance

© Digital Integrated Circuits^{2nd}

Impact of Interwire Capacitance

(from [Bakoglu89])

© Digital Integrated Circuits^{2nd}

Wiring Capacitances (0.25 µm CMOS)

	Field	Active	Poly	Al1	Al2	Al3	Al4
Poly	88						
	54						
Al1	30	41	57				
	40	47	54				
Al2	13	15	17	36			
	25	27	29	45			
Al3	8.9	9.4	10	15	41		
	18	19	20	27	49		
Al4	6.5	6.8	7	8.9	15	35	
	14	15	15	18	27	45	
Al5	5.2	5.4	5.4	6.6	9.1	14	38
	12	12	12	14	19	27	52

INTERCONNECT

Wire Resistance

© Digital Integrated Circuits^{2nd}

Interconnect Resistance

Material	ρ (Ω- m)
Silver (Ag)	1.6×10^{-8}
Copper (Cu)	1.7×10^{-8}
Gold (Au)	2.2×10^{-8}
Aluminum (Al)	2.7×10^{-8}
Tungsten (W)	5.5×10^{-8}

Dealing with Resistance

Selective Technology Scaling

Use Better Interconnect Materials

- reduce average wire-length
- e.g. copper, silicides

More Interconnect Layers

reduce average wire-length

Polycide Gate MOSFET

Silicides: WSi₂, TiSi₂, PtSi₂ and TaSi

Conductivity: 8-10 times better than Poly

© Digital Integrated Circuits^{2nd}

Sheet Resistance

Material	Sheet Resistance (Ω/\Box)	
n- or p-well diffusion	1000 - 1500	
n^+ , p^+ diffusion	50 - 150	
n^+ , p^+ diffusion with silicide	3 – 5	
n^+ , p^+ polysilicon	150 - 200	
n^+ , p^+ polysilicon with silicide	4 – 5	
Aluminum	0.05 - 0.1	

Modern Interconnect

Example: Intel 0.25 micron Process

5 metal layers Ti/Al - Cu/Ti/TiN Polysilicon dielectric

LAYER	<u>PITCH</u>	THICK	A.R.
Isolation	0.67	0.40	-
Polysilicon	0.64	0.25	-
Metal 1	0.64	0.48	1.5
Metal 2	0.93	0.90	1.9
Metal 3	0.93	0.90	1.9
Metal 4	1.60	1.33	1.7
Metal 5	2.56	1.90	1.5
	μm	μm	

Layer pitch, thickness and aspect ratio

INTERCONNECT

Interconnect Modeling

© Digital Integrated Circuits^{2nd}

The Lumped Model

The Lumped RC-Model The Elmore Delay

$$R_{ik} = \sum R_j \Rightarrow (R_j \in [path(s \to i) \cap path(s \to k)])$$
$$\tau_{Di} = \sum_{k=1}^{N} C_k R_{ik}$$

© Digital Integrated Circuits^{2nd}

The Ellmore Delay RC Chain

$$\tau_N = \sum_{i=1}^{N} R_i \sum_{j=i}^{N} C_j = \sum_{i=1}^{N} C_i \sum_{j=1}^{R} R_j$$

© Digital Integrated Circuits^{2nd}

Wire Model

Assume: Wire modeled by N equal-length segments

$$\tau_{DN} = \left(\frac{L}{N}\right)^2 (rc + 2rc + \dots + Nrc) = (rcL^2) \frac{N(N+1)}{2N^2} = RC \frac{N+1}{2N}$$

For large values of N:

$$\tau_{DN} = \frac{RC}{2} = \frac{rcL^2}{2}$$

The Distributed RC-line

Step-response of RC wire as a function of time and space

© Digital Integrated Circuits^{2nd}

RC-Models

Voltage Range	Lumped RC- network	Distributed RC-network
$0 \rightarrow 50\%$ (t _p)	0.69 RC	0.38 RC
0→63% (7)	RC	0.5 RC
10% \rightarrow 90% (t _r)	2.2 RC	0.9 RC

Step Response of Lumped and Distributed RC Networks: Points of Interest.

Driving an RC-line

$$\tau_D = R_s C_w + \frac{R_w C_w}{2} = R_s C_w + 0.5 r_w c_w L^2$$

$$t_p = 0.69R_sC_w + 0.38R_wC_w$$

© Digital Integrated Circuits^{2nd}

Design Rules of Thumb

□ rc delays should only be considered when t_{pRC} >> t_{pgate} of the driving gate

Lcrit >> $\sqrt{t_{pgate}}/0.38rc$

 rc delays should only be considered when the rise (fall) time at the line input is smaller than RC, the rise (fall) time of the line

$t_{rise} < RC$

 when not met, the change in the signal is slower than the propagation delay of the wire

© Digital Integrated Circuits^{2nd}

© MJIrwin, PSU, 2000