
Discriminant Analysis 

What Is Discriminant Analysis? 

Discriminant analysis is a classification method. It assumes that different classes generate data based on different 

Gaussian distributions. 

 To train (create) a classifier, the fitting function estimates the parameters of a Gaussian distribution for each class 

(see Creating a Classifier Using ClassificationDiscriminant.fit). 

 To predict the classes of new data, the trained classifier finds the class with the smallest misclassification cost 

(see How the predict Method Classifies). 

Linear discriminant analysis is also known as the Fisher discriminant, named for its inventor, Sir R. A. Fisher [2]. 

Create Discriminant Analysis Classifiers 

To create the basic types of discriminant analysis classifiers for the Fisher iris data: 

1. Load the data: 

load fisheriris; 

2. Create a default (linear) discriminant analysis classifier: 

linclass = ClassificationDiscriminant.fit(meas,species); 

To visualize the classification boundaries of a 2-D linear classification of the data, see Linear Discriminant 

Classification — Fisher Training Data. 

3. Classify an iris with average measurements: 

4. meanmeas = mean(meas); 

5. meanclass = predict(linclass,meanmeas) 

6.  

7. meanclass =  

    'versicolor' 

8. Create a quadratic classifier: 

9. quadclass = ClassificationDiscriminant.fit(meas,species,... 

    'discrimType','quadratic'); 
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To visualize the classification boundaries of a 2-D quadratic classification of the data, see Quadratic 

Discriminant Classification — Fisher Training Data. 

10. Classify an iris with average measurements using the quadratic classifier: 

11. meanclass2 = predict(quadclass,meanmeas) 

12.  

13. meanclass2 =  

    'versicolor' 

Creating a Classifier Using ClassificationDiscriminant.fit 

The model for discriminant analysis is:  

 Each class (Y) generates data (X) using a multivariate normal distribution. In other words, the model assumes X 

has a Gaussian mixture distribution (gmdistribution). 

o For linear discriminant analysis, the model has the same covariance matrix for each class; only the means vary. 

o For quadratic discriminant analysis, both means and covariances of each class vary. 

Under this modeling assumption, ClassificationDiscriminant.fit infers the mean and 

covariance parameters of each class. 

 For linear discriminant analysis, it computes the sample mean of each class. Then it computes the sample 

covariance by first subtracting the sample mean of each class from the observations of that class, and taking the 

empirical covariance matrix of the result. 

 For quadratic discriminant analysis, it computes the sample mean of each class. Then it computes the sample 

covariances by first subtracting the sample mean of each class from the observations of that class, and taking the 

empirical covariance matrix of each class. 

The fit method does not use prior probabilities or costs for fitting. 

Weighted Observations 

The fit method constructs weighted classifiers using the following scheme. Suppose M is an N-by-K class 

membership matrix: 

Mnk = 1 if observation n is from class k 

Mnk = 0 otherwise. 

The estimate of the class mean for unweighted data is 
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For weighted data with positive weights wn, the natural generalization is 

 

The unbiased estimate of the pooled-in covariance matrix for unweighted data is 

 

For quadratic discriminant analysis, the fit method uses K = 1. 

For weighted data, assuming the weights sum to 1, the unbiased estimate of the pooled-in covariance matrix is 

 

where 

 is the sum of the weights for class k. 

 is the sum of squared weights per class. 

How the predict Method Classifies 

There are three elements in the predict classification algorithm: 

 Posterior Probability 

 Prior Probability 

 Cost 

predict classifies so as to minimize the expected classification cost: 
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where 

 is the predicted classification. 

 K is the number of classes. 

 is the posterior probability of class k for observation x. 

 is the cost of classifying an observation as y when its true class is k. 

The space of X values divides into regions where a classification Y is a particular value. The regions are 

separated by straight lines for linear discriminant analysis, and by conic sections (ellipses, hyperbolas, or 

parabolas) for quadratic discriminant analysis. For a visualization of these regions, see Create and Visualize a 

Discriminant Analysis Classifier. 

Posterior Probability 

The posterior probability that a point x belongs to class k is the product of the prior probability and the multivariate 

normal density. The density function of the multivariate normal with mean μk and covariance Σk at a point x is 

 

where is the determinant of Σk, and is the inverse matrix. 

Let P(k) represent the prior probability of class k. Then the posterior probability that an observation x is of class k 

is 

 

where P(x) is a normalization constant, namely, the sum over k of P(x|k)P(k). 

Prior Probability 

The prior probability is one of three choices: 

 'uniform' — The prior probability of class k is 1 over the total number of classes. 

 'empirical' — The prior probability of class k is the number of training samples of class k divided by the 

total number of training samples. 

 A numeric vector — The prior probability of class k is the jth element of the prior vector. See 

ClassificationDiscriminant.fit. 

After creating a classifier obj, you can set the prior using dot addressing: 
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obj.Prior = v; 

where v is a vector of positive elements representing the frequency with which each element occurs. You do not 

need to retrain the classifier when you set a new prior. 

Cost 

There are two costs associated with discriminant analysis classification: the true misclassification cost per class, 

and the expected misclassification cost per observation. 

True Misclassification Cost per Class. Cost(i,j) is the cost of classifying an observation into class j if its 

true class is i. By default, Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other words, the cost is 

0 for correct classification, and 1 for incorrect classification. 

You can set any cost matrix you like when creating a classifier. Pass the cost matrix in the Cost name-value pair 

in ClassificationDiscriminant.fit. 

After you create a classifier obj, you can set a custom cost using dot addressing: 

obj.Cost = B; 

B is a square matrix of size K-by-K when there are K classes. You do not need to retrain the classifier when you 

set a new cost. 

Expected Misclassification Cost per Observation. Suppose you have Nobs observations that you want to 

classify with a trained discriminant analysis classifier obj. Suppose you have K classes. You place the 

observations into a matrix Xnew with one observation per row. The command 

[label,score,cost] = predict(obj,Xnew) 

returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost matrix contains the 

expected (average) cost of classifying the observation into each of the K classes. cost(n,k) is 

 

where 

 K is the number of classes. 

 is the posterior probability of class i for observation Xnew(n). 
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 is the cost of classifying an observation as k when its true class is i. 

Create and Visualize a Discriminant Analysis Classifier 

This example shows both linear and quadratic classification of the Fisher iris data. The example uses only two of 

the four predictors to enable simple plotting. 

1. Load the data: 

load fisheriris 

2. Use the petal length (PL) and petal width (PW) measurements: 

PL = meas(:,3); 

PW = meas(:,4); 

3. Plot the data, showing the classification: 

h1 = gscatter(PL,PW,species,'krb','ov^',[],'off'); 

set(h1,'LineWidth',2) 

legend('Setosa','Versicolor','Virginica',... 

       'Location','best') 
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4. Create a linear classifier: 

X = [PL,PW]; 

cls = ClassificationDiscriminant.fit(X,species); 

5. Plot the classification boundaries: 

hold on 

K = cls.Coeffs(2,3).Const; 

L = cls.Coeffs(2,3).Linear;  

% Plot the curve K + [x,y]*L  = 0: 

f = @(x1,x2) K + L(1)*x1 + L(2)*x2; 

h2 = ezplot(f,[.9 7.1 0 2.5]); 

set(h2,'Color','r','LineWidth',2) 

 

K = cls.Coeffs(1,2).Const; 

L = cls.Coeffs(1,2).Linear;  

% Plot the curve K + [x1,x2]*L  = 0: 

f = @(x1,x2) K + L(1)*x1 + L(2)*x2; 

h3 = ezplot(f,[.9 7.1 0 2.5]); 

set(h3,'Color','k','LineWidth',2) 

axis([.9 7.1 0 2.5]) 

xlabel('Petal Length') 

ylabel('Petal Width') 

title('{\bf Linear Classification with Fisher Training Data}') 

Linear Discriminant Classification — Fisher Training Data 

 



6. Create a quadratic discriminant classifier: 

cqs = ClassificationDiscriminant.fit(X,species,... 

      'DiscrimType','quadratic'); 

7. Plot the classification boundaries: 

     delete(h2); delete(h3) % remove the linear plots 

K = cqs.Coeffs(2,3).Const; 

L = cqs.Coeffs(2,3).Linear;  

Q = cqs.Coeffs(2,3).Quadratic; 

% Plot the curve K + [x1,x2]*L + [x1,x2]*Q*[x1,x2]'=0: 

f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + ... 

    (Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2; 

h2 = ezplot(f,[.9 7.1 0 2.5]); 

set(h2,'Color','r','LineWidth',2) 

K = cqs.Coeffs(1,2).Const; 

L = cqs.Coeffs(1,2).Linear; 

Q = cqs.Coeffs(1,2).Quadratic; 

% Plot the curve K + [x1,x2]*L + [x1,x2]*Q*[x1,x2]'=0: 

f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + ... 

    (Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2; 

h3 = ezplot(f,[.9 7.1 0 1.02]); % plot the relevant 

                                % portion of the curve 

set(h3,'Color','k','LineWidth',2) 

axis([.9 7.1 0 2.5]) 

xlabel('Petal Length') 

ylabel('Petal Width') 

title('{\bf Quadratic Classification with Fisher Training Data}') 

hold off 

Quadratic Discriminant Classification — Fisher Training Data 

 

Improve a Discriminant Analysis Classifier 

 Deal with Singular Data 

 Choose a Discriminant Type 
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 Examine the Resubstitution Error and Confusion Matrix 

 Cross Validation 

 Change Costs and Priors 

Deal with Singular Data 

Discriminant analysis needs data sufficient to fit Gaussian models with invertible covariance matrices. If 

your data is not sufficient to fit such a model uniquely, ClassificationDiscriminant.fit 

fails. This section shows methods for handling failures. 

Tip To obtain a discriminant analysis classifier without failure, set the DiscrimType name-value pair to 'pseudoLinear' or 

'pseudoQuadratic' in ClassificationDiscriminant.fit. 

"Pseudo" discriminants never fail, because they use the pseudoinverse of the covariance matrix Σk (see pinv). 

 

8. Example: Singular Covariance Matrix. When the covariance matrix of the fitted classifier is singular,  

ClassificationDiscriminant.fit can fail: 

load popcorn 

X = popcorn(:,[1 2]); 

X(:,3) = 0; % a zero-variance column 

Y = popcorn(:,3); 

ppcrn = ClassificationDiscriminant.fit(X,Y); 

Error using ClassificationDiscriminant (line 635) 

Predictor x3 has zero variance. Either exclude this predictor or set  

'discrimType' to 

'pseudoLinear' or 'diagLinear'. 

Error in classreg.learning.FitTemplate/fit (line 243) 

            obj=this.MakeFitObject(X,Y,W,this.ModelParams,fitArgs{:}); 

Error in ClassificationDiscriminant.fit (line 296) 

            this = fit(temp,X,Y); 

To proceed with linear discriminant analysis, use a pseudoLinear or diagLinear discriminant type: 

ppcrn = ClassificationDiscriminant.fit(X,Y,... 

    'discrimType','pseudoLinear'); 

meanpredict = predict(ppcrn,mean(X)) 

 

meanpredict = 

    3.5000 

Choose a Discriminant Type 
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There are six types of discriminant analysis classifiers: linear and quadratic, with diagonal and pseudo 

variants of each type. 

Tip To see if your covariance matrix is singular, set discrimType to 'linear' or 'quadratic'. If the matrix is singular, the 

ClassificationDiscriminant.fit method fails for 'quadratic', and the Gamma property is nonzero for 

'linear'. 

To obtain a quadratic classifier even when your covariance matrix is singular, set discrimType to 'pseudoQuadratic' or 

'diagQuadratic'. 

obj = ClassificationDiscriminant.fit(X,Y,... 

    'discrimType','pseudoQuadratic') % or 'diagQuadratic' 

 

Choose a classifier type by setting the discrimType name-value pair to one of: 

 'linear' (default) — Estimate one covariance matrix for all classes. 

 'quadratic' — Estimate one covariance matrix for each class. 

 'diagLinear' — Use the diagonal of the 'linear' covariance matrix, and use its pseudoinverse if necessary. 

 'diagQuadratic' — Use the diagonals of the 'quadratic' covariance matrices, and use their pseudoinverses if 

necessary. 

 'pseudoLinear' — Use the pseudoinverse of the 'linear' covariance matrix if necessary. 

 'pseudoQuadratic' — Use the pseudoinverses of the 'quadratic' covariance matrices if necessary. 

 

ClassificationDiscriminant.fit can fail for the 'linear' and 'quadratic' classifiers. When it 

fails, it returns an explanation, as shown in Deal with Singular Data. 

ClassificationDiscriminant.fit always succeeds with the diagonal and pseudo variants. For information 

about pseudoinverses, see pinv. 

You can set the discriminant type using dot addressing after constructing a classifier: 

obj.DiscrimType = 'discrimType' 

You can change between linear types or between quadratic types, but cannot change between a linear and a 

quadratic type. 

Examine the Resubstitution Error and Confusion Matrix 

The resubstitution error is the difference between the response training data and the predictions the classifier 

makes of the response based on the input training data. If the resubstitution error is high, you cannot expect the 

predictions of the classifier to be good. However, having low resubstitution error does not guarantee good 

predictions for new data. Resubstitution error is often an overly optimistic estimate of the predictive error on new 

data. 

The confusion matrix shows how many errors, and which types, arise in resubstitution. When there are K classes, 

the confusion matrix R is a K-by-K matrix with 

R(i,j) = the number of observations of class i that the classifier predicts to be of class j. 
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Example: Resubstitution Error of a Discriminant Analysis Classifier. Examine the resubstitution error of the 

default discriminant analysis classifier for the Fisher iris data: 

load fisheriris 

obj = ClassificationDiscriminant.fit(meas,species); 

resuberror = resubLoss(obj) 

resuberror =  

                   0.0200 

 

 The resubstitution error is very low, meaning obj classifies nearly all the Fisher iris data correctly. The total 

number of misclassifications is: 

resuberror * obj.NObservations 

ans = 

    3.0000 

To see the details of the three misclassifications, examine the confusion matrix: 

R = confusionmat(obj.Y,resubPredict(obj)) 

R = 

    50     0     0 

     0    48     2 

     0     1    49 

obj.ClassNames 

ans =  

    'setosa' 

    'versicolor' 

    'virginica' 

R(1,:) = [50 0 0] means obj classifies all 50 setosa irises correctly. 

R(2,:) = [0 48 2] means obj classifies 48 versicolor irises correctly, and misclassifies two 

versicolor irises as virginica. 

R(3,:) = [0 1 49] means obj classifies 49 virginica irises correctly, and misclassifies one 

virginica iris as versicolor. 

Cross Validation 

Typically, discriminant analysis classifiers are robust and do not exhibit overtraining when the number of 

predictors is much less than the number of observations. Nevertheless, it is good practice to cross validate your 

classifier to ensure its stability. 

 

Example: Cross Validating a Discriminant Analysis Classifier. Try five-fold cross validation of a quadratic 

discriminant analysis classifier: 

1. Load the Fisher iris data: 

load fisheriris 

2. Create a quadratic discriminant analysis classifier for the data: 



quadisc = ClassificationDiscriminant.fit(meas,species,...    

'DiscrimType','quadratic'); 

3. Find the resubstitution error of the classifier: 

qerror = resubLoss(quadisc) 

qerror = 

    0.0200 

The classifier does an excellent job. Nevertheless, resubstitution error can be an optimistic estimate of the 

error when classifying new data. So proceed to cross validation. 

4. Create a cross-validation model: 

cvmodel = crossval(quadisc,'kfold',5); 

5. Find the cross-validation loss for the model, meaning the error of the out-of-fold observations: 

cverror = kfoldLoss(cvmodel) 

cverror = 

    0.0333 

The cross-validated loss is nearly as low as the original resubstitution loss. Therefore, you can have 

confidence that the classifier is reasonably accurate. 

Change Costs and Priors 

Sometimes you want to avoid certain misclassification errors more than others. For example, it might be better to 

have oversensitive cancer detection instead of undersensitive cancer detection. Oversensitive detection gives 

more false positives (unnecessary testing or treatment). Undersensitive detection gives more false negatives 

(preventable illnesses or deaths). The consequences of underdetection can be high. Therefore, you might want to 

set costs to reflect the consequences. 

Similarly, the training data Y can have a distribution of classes that does not represent their true frequency. If you 

have a better estimate of the true frequency, you can include this knowledge in the classification prior 

property. 

Change Costs and Priors 

Sometimes you want to avoid certain misclassification errors more than others. For example, it might be better to 

have oversensitive cancer detection instead of undersensitive cancer detection. Oversensitive detection gives 

more false positives (unnecessary testing or treatment). Undersensitive detection gives more false negatives 

(preventable illnesses or deaths). The consequences of underdetection can be high. Therefore, you might want to 

set costs to reflect the consequences. 

Similarly, the training data Y can have a distribution of classes that does not represent their true frequency. If you 

have a better estimate of the true frequency, you can include this knowledge in the classification prior 

property. 

Example: Setting Custom Misclassification Costs. Consider the Fisher iris data. Suppose that the cost of 

classifying a versicolor iris as virginica is 10 times as large as making any other classification error. Create a 

classifier from the data, then incorporate this cost and then view the resulting classifier. 

1. Load the Fisher iris data and create a default (linear) classifier as in Example: Resubstitution Error of a 

Discriminant Analysis Classifier: 
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load fisheriris 

obj = ClassificationDiscriminant.fit(meas,species); 

resuberror = resubLoss(obj) 

resuberror = 

    0.0200 

R = confusionmat(obj.Y,resubPredict(obj)) 

R = 

    50     0     0 

     0    48     2 

     0     1    49 

obj.ClassNames 

ans =  

    'setosa' 

    'versicolor' 

    'virginica' 

R(2,:) = [0 48 2] means obj classifies 48 versicolor irises correctly, and misclassifies two 

versicolor irises as virginica. 

2. Change the cost matrix to make fewer mistakes in classifying versicolor irises as virginica: 

obj.Cost(2,3) = 10; 

R2 = confusionmat(obj.Y,resubPredict(obj)) 

R2 = 

    50     0     0 

     0    50     0 

     0     7    43 

obj now classifies all versicolor irises correctly, at the expense of increasing the number of 

misclassifications of virginica irises from 1 to 7. 

Example: Setting Alternative Priors. Consider the Fisher iris data. There are 50 irises of each kind in the data. 

Suppose that, in a particular region, you have historical data that shows virginica are five times as prevalent as 

the other kinds. Create a classifier that incorporates this information. 

1. Load the Fisher iris data and make a default (linear) classifier as in Example: Resubstitution Error of a 

Discriminant Analysis Classifier: 

load fisheriris 

obj = ClassificationDiscriminant.fit(meas,species); 

resuberror = resubLoss(obj) 

resuberror = 

    0.0200 

R = confusionmat(obj.Y,resubPredict(obj)) 

R = 

50     0     0 

0    48     2 

0     1    49 

obj.ClassNames 

ans =  

     'setosa' 
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     'versicolor' 

     'virginica' 

R(3,:) = [0 1 49] means obj classifies 49 virginica irises correctly, and misclassifies one 

virginica iris as versicolor. 

2. Change the prior to match your historical data, and examine the confusion matrix of the new classifier: 

obj.Prior = [1 1 5]; 

R2 = confusionmat(obj.Y,resubPredict(obj)) 

R2 = 

    50     0     0 

     0    46     4 

     0     0    50 

The new classifier classifies all virginica irises correctly, at the expense of increasing the number of 

misclassifications of versicolor irises from 2 to 4. 

Regularize a Discriminant Analysis Classifier 

To make a more robust and simpler model, try to remove predictors from your model without hurting its 

predictive power. This is especially important when you have many predictors in your data. Linear 

discriminant analysis uses the two regularization parameters, Gamma and Delta, to identify and remove 

redundant predictors. The cvshrink method helps you identify appropriate settings for these parameters. 

1.    Load data and create a classifier. 

2.     Cross validate the classifier. 

3.     Examine the quality of the regularized classifiers. 

4.      Choose an optimal tradeoff between model size and accuracy. 

6.  Set the regularization parameters. 

7.  Heat map plot. 

 

1. Load data and create a classifier. 

Create a linear discriminant analysis classifier for the ovariancancer data. Set the SaveMemory and FillCoeffs 

options to keep the resulting model reasonably small. 

load ovariancancer 

obj = ClassificationDiscriminant.fit(obs,grp,... 

    'SaveMemory','on','FillCoeffs','off'); 

2. Cross validate the classifier. 

Use 30 levels of Gamma and 30 levels of Delta to search for good parameters. This search is time consuming. 

Set Verbose to 1 to view the progress. 

rng(8000,'twister') % for reproducibility 

[err,gamma,delta,numpred] = cvshrink(obj,... 

    'NumGamma',29,'NumDelta',29,'Verbose',1); 
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Done building cross-validated model. 

Processing Gamma step 1 out of 30. 

Processing Gamma step 2 out of 30. 

Processing Gamma step 3 out of 30. 

%%% (many lines removed) %%% 

Processing Gamma step 28 out of 30. 

Processing Gamma step 29 out of 30. 

Processing Gamma step 30 out of 30. 

3. Examine the quality of the regularized classifiers. 

Plot the number of predictors against the error. 

figure; 

plot(err,numpred,'k.') 

xlabel('Error rate'); 

ylabel('Number of predictors'); 

 

Examine the lower-left part of the plot more closely. 

axis([0 .1 0 1000]) 

 

 

 

 

 



 

There is a clear tradeoff between lower number of predictors and lower error. 

4. Choose an optimal tradeoff between model size and accuracy. 

Find the values of Gamma and Delta that give minimal error 

minerr = min(min(err)); 

[p,q] = find(err == minerr) 

p = 

    24 

    25 

q = 

     8 

     8 

Two points have the same minimal error: [24,8] and [25,8], which correspond to 

[gamma(p(1)),delta(p(1),q(1))] 

ans = 

    0.8436    0.1463 

[gamma(p(2)),delta(p(2),q(2))] 



ans = 

    0.8697    0.1425 

These points correspond to about a quarter of the total predictors having nonzero coefficients in the model. 

numpred(p(1),q(1)) 

ans = 

   957 

numpred(p(2),q(2)) 

ans = 

   960 

To further lower the number of predictors, you must accept larger error rates. For example, to choose the Gamma 

and Delta that give the lowest error rate with 250 or fewer predictors: 

low250 = min(min(err(numpred <= 250))) 

low250 = 

    0.0278 

lownum = min(min(numpred(err == low250))) 

lownum = 

   243 

You need 243 predictors to achieve an error rate of 0.0278, and this is the lowest error rate among those that 

have 250 predictors or fewer. The Gamma and Delta that achieve this error/number of predictors: 

[r,s] = find((err == low250) & (numpred == lownum)); 

gamma(r) 

ans = 

    0.7133 

delta(r,s) 



ans = 

    0.2960 

5. Set the regularization parameters. 

To set the classifier with these values of Gamma and Delta, use dot addressing. 

obj.Gamma = gamma(r); 

obj.Delta = delta(r,s); 

6. Heat map plot. 

To compare the cvshrink calculation to that in Guo, Hastie, and Tibshirani [3], plot heat maps of error and 

number of predictors against Gamma and the index of the Delta parameter. (The Delta parameter range 

depends on the value of the Gamma parameter. So to get a rectangular plot, use the Delta index, not the 

parameter itself.) 

% First create the Delta index matrix 

indx = repmat(1:size(delta,2),size(delta,1),1); 

figure 

subplot(1,2,1) 

imagesc(err); 

colorbar; 

title('Classification error'); 

xlabel('Delta index'); 

ylabel('Gamma index'); 

 

subplot(1,2,2) 

imagesc(numpred); 

colorbar; 

title('Number of predictors in the model'); 

xlabel('Delta index'); 

ylabel('Gamma index'); 
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You see the best classification error when Delta is small, but fewest predictors when Delta is large. 

Examine the Gaussian Mixture Assumption 

Discriminant analysis assumes that the data comes from a Gaussian mixture model (see Creating a Classifier Using 

ClassificationDiscriminant.fit). If the data appears to come from a Gaussian mixture model, you can expect 

discriminant analysis to be a good classifier. Furthermore, the default linear discriminant analysis assumes that all 

class covariance matrices are equal. This section shows methods to check these assumptions: 

 Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis 

 Q-Q Plot 

 Mardia Kurtosis Test of Multivariate Normality 

Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis 

The Bartlett test (see Box [1]) checks equality of the covariance matrices of the various classes. If the covariance 

matrices are equal, the test indicates that linear discriminant analysis is appropriate. If not, consider using 

quadratic discriminant analysis, setting the DiscrimType name-value pair to 'quadratic' in 

ClassificationDiscriminant.fit. 

The Bartlett test assumes normal (Gaussian) samples, where neither the means nor covariance matrices are 

known. To determine whether the covariances are equal, compute the following quantities: 

 Sample covariance matrices per class σi, 1 ≤ i ≤ k, where k is the number of classes. 

 Pooled-in covariance matrix σ. 

 Test statistic V: 

 

where n is the total number of observations, and ni is the number of observations in class i, and |Σ| means the 

determinant of the matrix Σ. 

 Asymptotically, as the number of observations in each class ni become large, V is distributed approximately χ2 

with kd(d + 1)/2 degrees of freedom, where d is the number of predictors (number of dimensions in the data).  

The Bartlett test is to check whether V exceeds a given percentile of the χ2 distribution with kd(d + 1)/2 degrees of 

freedom. If it does, then reject the hypothesis that the covariances are equal. 

http://www.mathworks.com/help/stats/discriminant-analysis.html#bs1tuj9
http://www.mathworks.com/help/stats/discriminant-analysis.html#bs1tuj9
http://www.mathworks.com/help/stats/discriminant-analysis.html#bs2r9p4
http://www.mathworks.com/help/stats/discriminant-analysis.html#bs2r9k_
http://www.mathworks.com/help/stats/discriminant-analysis.html#bs2r9lk
http://www.mathworks.com/help/stats/discriminant-analysis.html#bs2se3g
http://www.mathworks.com/help/stats/classificationdiscriminant.fit.html


Example: Bartlett Test for Equal Covariance Matrices. Check whether the Fisher iris data is well modeled by a 

single Gaussian covariance, or whether it would be better to model it as a Gaussian mixture. 

load fisheriris; 

prednames = {'SepalLength','SepalWidth',... 

    'PetalLength','PetalWidth'}; 

L = ClassificationDiscriminant.fit(meas,species,... 

    'PredictorNames',prednames); 

Q = ClassificationDiscriminant.fit(meas,species,... 

    'PredictorNames',prednames,'DiscrimType','quadratic'); 

D = 4; % Number of dimensions of X 

Nclass = [50 50 50]; 

N = L.NObservations; 

K = numel(L.ClassNames); 

SigmaQ = Q.Sigma; 

SigmaL = L.Sigma; 

logV = (N-K)*log(det(SigmaL)); 

for k=1:K 

    logV = logV - (Nclass(k)-1)*log(det(SigmaQ(:,:,k))); 

end 

nu = (K-1)*D*(D+1)/2; 

pval = 1-chi2cdf(logV,nu) 

 

pval = 

     0 

 

The Bartlett test emphatically rejects the hypothesis of equal covariance matrices. If pval had been greater than 

0.05, the test would not have rejected the hypothesis. The result indicates to use quadratic discriminant 

analysis, as opposed to linear discriminant analysis. 

Q-Q Plot 

A Q-Q plot graphically shows whether an empirical distribution is close to a theoretical distribution. If the two are 

equal, the Q-Q plot lies on a 45° line. If not, the Q-Q plot strays from the 45° line. 

Check Q-Q Plots for Linear and Quadratic Discriminants. For linear discriminant analysis, use a single 

covariance matrix for all classes. 

load fisheriris; 

prednames = {'SepalLength','SepalWidth',... 

    'PetalLength','PetalWidth'}; 

L = ClassificationDiscriminant.fit(meas,species,... 

    'PredictorNames',prednames); 

N = L.NObservations; 

K = numel(L.ClassNames); 



mahL = mahal(L,L.X,'ClassLabels',L.Y); 

D = 4; 

expQ = chi2inv(((1:N)-0.5)/N,D); % expected quantiles 

[mahL,sorted] = sort(mahL); % sorted obbserved quantiles 

figure; 

gscatter(expQ,mahL,L.Y(sorted),'bgr',[],[],'off'); 

legend('virginica','versicolor','setosa','Location','NW'); 

xlabel('Expected quantile'); 

ylabel('Observed quantile'); 

line([0 20],[0 20],'color','k'); 

 

Overall, the agreement between the expected and observed quantiles is good. Look at the right half of the plot. 

The deviation of the plot from the 45° line upward indicates that the data has tails heavier than a normal 

distribution. There are three possible outliers on the right: two observations from class 'setosa' and one 

observation from class 'virginica'. 

As shown in Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis, the data does not match a 

single covariance matrix. Redo the calculations for a quadratic discriminant 

load fisheriris; 

prednames = {'SepalLength','SepalWidth',... 

    'PetalLength','PetalWidth'}; 

Q = ClassificationDiscriminant.fit(meas,species,... 

    'PredictorNames',prednames,'DiscrimType','quadratic'); 

Nclass = [50 50 50]; 

N = L.NObservations; 

K = numel(L.ClassNames); 

mahQ = mahal(Q,Q.X,'ClassLabels',Q.Y); 

expQ = chi2inv(((1:N)-0.5)/N,D); 

[mahQ,sorted] = sort(mahQ); 

figure; 

gscatter(expQ,mahQ,Q.Y(sorted),'bgr',[],[],'off'); 

legend('virginica','versicolor','setosa','Location','NW'); 
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xlabel('Expected quantile'); 

ylabel('Observed quantile for QDA'); 

line([0 20],[0 20],'color','k'); 

 

The Q-Q plot shows a better agreement between the observed and expected quantiles. There is only one outlier 

candidate, from class 'setosa'. 

Mardia Kurtosis Test of Multivariate Normality 

The Mardia kurtosis test (see Mardia [4]) is an alternative to examining a Q-Q plot. It gives a numeric approach to 

deciding if data matches a Gaussian mixture model. 

In the Mardia kurtosis test you compute M, the mean of the fourth power of the Mahalanobis distance of the data 

from the class means. If the data is normally distributed with constant covariance matrix (and is thus suitable for 

linear discriminant analysis), M is asymptotically distributed as normal with mean d(d + 2) and variance 8d(d + 

2)/n, where 

 d is the number of predictors (number of dimensions in the data). 

 n is the total number of observations. 

 

The Mardia test is two sided: check whether M is close enough to d(d + 2) with respect to a normal distribution of 

variance 8d(d + 2)/n. 

Example: Mardia Kurtosis Test for Linear and Quadratic Discriminants. Check whether the Fisher iris data is 

approximately normally distributed for both linear and quadratic discriminant analysis. According to Bartlett Test of 

Equal Covariance Matrices for Linear Discriminant Analysis, the data is not normal for linear discriminant analysis (the 

covariance matrices are different). Check Q-Q Plots for Linear and Quadratic Discriminants indicates that the data is 

well modeled by a Gaussian mixture model with different covariances per class. Check these conclusions with the 

Mardia kurtosis test: 

load fisheriris; 

prednames = {'SepalLength','SepalWidth',... 

    'PetalLength','PetalWidth'}; 

L = ClassificationDiscriminant.fit(meas,species,... 

    'PredictorNames',prednames); 

mahL = mahal(L,L.X,'ClassLabels',L.Y); 

D = 4; 
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N = L.NObservations; 

obsKurt = mean(mahL.^2); 

expKurt = D*(D+2); 

varKurt = 8*D*(D+2)/N; 

[~,pval] = ztest(obsKurt,expKurt,sqrt(varKurt)) 

 

pval = 

    0.0208 

The Mardia test indicates to reject the hypothesis that the data is normally distributed.  

Continuing the example with quadratic discriminant analysis: 

Q = ClassificationDiscriminant.fit(meas,species,... 

    'PredictorNames',prednames,'DiscrimType','quadratic'); 

mahQ = mahal(Q,Q.X,'ClassLabels',Q.Y); 

obsKurt = mean(mahQ.^2); 

[~,pval] = ztest(obsKurt,expKurt,sqrt(varKurt)) 

pval = 

    0.7230 

Because pval is high, you conclude the data are consistent with the multivariate normal distribution. 
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