Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo Katedra za metalne konstrukcije

# Projektiranje rezervoarjev po evropskih standardih

delovno gradivo - II

December 2008

Darko Beg

Mejna stanja nosilnosti

# LS1: Plastična nosilnost

- običajno polni rezervoarji
- predvsem zadnji pas ob dnu rezervoarja (robna motnja)

# LS2: Nizko-ciklično utrujanje

- akumuliranje plastičnih deformacij
- polnjenje praznjenje rezervoarja, temperaturne spremembe
- LS3: Stabilnost
  - običajno prazni rezervoarji (veter, vertikalna obtežba streha)
- LS4: Visoko-ciklično utrujanje
  - $-\Delta\sigma$  (polnjenje praznjenje rezervoarja, temperaturne spremembe)
  - nominalno elastično obnašanje



Figure 1.5: Stress resultants in the tank wall (shells and boxes)

• Napetostna metoda

Membransko stanje

$$\sigma_{eq,Ed} = \frac{1}{t} \sqrt{n_{x,Ed}^2 + n_{\theta,Ed}^2 - n_{x,Ed} \cdot n_{\theta,Ed} + 3n_{x\theta,Ed}^2}$$

Upogibno stanje

$$\sigma_{eq,Ed} = \sqrt{\sigma_{x,Ed}^2 + \sigma_{\theta,Ed}^2 - \sigma_{x,Ed} \cdot \sigma_{\theta,Ed} + 3\left(\tau_{x\theta,Ed}^2 + \tau_{xn,Ed}^2 + \tau_{\theta n,Ed}^2\right)}$$

$$\sigma_{x,Ed} = \frac{n_{x,Ed}}{t} \pm \frac{m_{x,Ed}}{\left(t^2 / 4\right)} \qquad \sigma_{\theta,Ed} = \frac{n_{\theta,Ed}}{t} \pm \frac{m_{\theta,Ed}}{\left(t^2 / 4\right)} \qquad \tau_{x\theta,Ed} = \frac{n_{x\theta,Ed}}{t} \pm \frac{m_{x\theta,Ed}}{\left(t^2 / 4\right)} \\ \tau_{xn,Ed} = \frac{q_{xn,Ed}}{t} \qquad \tau_{\theta n,Ed} = \frac{q_{\theta n,Ed}}{t}$$

$$\sigma_{eq,Ed} \leq f_{eq,Ed} = f_{yk} / \gamma_{M0}$$

Direktna metoda ullet



 $\sigma_{eq.Ed} = 1,614 p \frac{r}{t} \le \frac{f_y}{\gamma_{M0}}$ 

$$\begin{array}{c} \gamma_G = 1,35 \\ \gamma_Q = 1,50 \end{array}$$

Ostale vplive običajno lahko zanemarimo (veter, streha ...)

Bild 6. Membran- und Biegespannungsanteile

#### C.2.4 Cylinder, clamped: hydrostatic internal pressure





Maximum  $\sigma_{eq,m}$ Maximum  $\tau_{xn}$ Maximum  $\sigma_{eq,s}$ Maximum  $\sigma_{sx}$ Maximum  $\sigma_{s\theta}$  $k_{\tau} \sqrt{t/r} \sigma_{\rm MT\theta}$  $k_{\rm x} \sigma_{\rm MT\theta}$  $k_{\theta} \sigma_{\rm MT\theta}$  $k_{\rm eq,s} \sigma_{\rm MT\theta}$  $k_{\rm eq,m} \sigma_{\rm MT\theta}$ 

| $\left(\frac{\sqrt{rt}}{\ell_p}\right)$ | $k_{\mathrm{x}}$ | $k_{\Theta}$ | $k_{t}$ | k <sub>eq,s</sub> | k <sub>eq,m</sub> |
|-----------------------------------------|------------------|--------------|---------|-------------------|-------------------|
| 0                                       | 1,816            | 1,080        | 1,169   | 1,614             | 1,043             |
| 0,2                                     | 1,533            | 0,733        | 1,076   | 1,363             | 0,647             |

### Direktna metoda

#### C.4.3 Cylinder: step change of thickness



| Maximum $\sigma_{sx}$                       | Maximum $\sigma_{\! m s	heta}$     | Maximum $	au_{xn}$                          | Maximum $\sigma_{eq,s}$             | Maximum $\sigma_{\! m eq,m}$      |
|---------------------------------------------|------------------------------------|---------------------------------------------|-------------------------------------|-----------------------------------|
| $k_{\mathrm{x}} \sigma_{\mathrm{MT}\theta}$ | $k_{	heta} \sigma_{	ext{MT}	heta}$ | $k_{\tau} \sqrt{t/r} \sigma_{\rm MT\theta}$ | $k_{ m eq,s} \ \sigma_{ m MT	heta}$ | $k_{ m eq,m} \sigma_{ m MT	heta}$ |

| $\left(\frac{t_1}{t_2}\right)$ | $k_{\mathrm{x}}$ | $k_{	extsf{	heta}}$ | $k_{\tau}$ | k <sub>eq,s</sub> | k <sub>eq,m</sub> |
|--------------------------------|------------------|---------------------|------------|-------------------|-------------------|
| 1,0                            | 0,0              | 1,0                 | 0,0        | 1,0               | 1,0               |
| 0,8                            | 0,0256           | 1,010               | 0,179      | 1,009             | 0,895             |
| 0,667                          | 0,0862           | 1,019               | 0,349      | 1,015             | 0,815             |
| 0,571                          | 0,168            | 1,023               | 0,514      | 1,019             | 0,750             |
| 0,5                            | 0,260            | 1,027               | 0,673      | 1,023             | 0,694             |

#### Direktna metoda

#### C.5.3 Ring stiffened cylinder: uniform internal pressure

The stresses in the shell should be determined using the calculated value of w from this claus introduced into the expressions given in C.2.5 and C.2.1.



|        |    | <u></u>   |      |    |       |     |              |
|--------|----|-----------|------|----|-------|-----|--------------|
| $\sim$ | 01 | $-\infty$ | 1212 | 20 | t • • | 0.1 | <b>n</b> (1) |
|        |    |           |      | ня | 1 14  |     | 15           |
|        |    | ~         |      | па |       | ~   | 1.7          |
|        |    |           |      |    |       |     |              |

| Maximum $\sigma_{\! m sx}$                   | Maximum $\sigma_{\!s}$                                  | <sub>θ</sub> Maximu                        | m $	au_{\mathrm{xn}}$ | Max                                                                  | imum $\sigma_{ m eq,s}$ | Maximum $\sigma_{eq,m}$           |
|----------------------------------------------|---------------------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------------------------|-------------------------|-----------------------------------|
| $k_{\mathrm{x}} \sigma_{\mathrm{MT} \theta}$ | $k_{	extsf{	heta}} \sigma_{	extsf{	heta}	extsf{	heta}}$ | $k_{\tau}\sqrt{t/r} \sigma_{\rm MT\theta}$ |                       | $\bar{r} \sigma_{\rm MT\theta} = k_{\rm eq,s} \sigma_{\rm MT\theta}$ |                         | $k_{ m eq,m}~\sigma_{ m MT	heta}$ |
|                                              |                                                         |                                            |                       |                                                                      |                         |                                   |
| К                                            | k <sub>x</sub>                                          | $k_{\Theta}$                               | k <sub>τ</sub>        |                                                                      | $k_{\rm eq,s}$          | k <sub>eq,m</sub>                 |
| 1,0                                          | 1,816                                                   | 1,080                                      | 1,10                  | 59                                                                   | 1,614                   | 1,043                             |
| 0,75                                         | 1,312                                                   | 1,060                                      | 0,87                  | 77                                                                   | 1,290                   | 1,032                             |
| 0,50                                         | 0,908                                                   | 1,040                                      | 0,58                  | 35                                                                   | 1,014                   | 1,021                             |
| 0,0                                          | 0,0                                                     | 1,000                                      | 0,0                   | )                                                                    | 1,000                   | 1,000                             |

- Nelinearna globalna analiza
  - Metoda končnih elementov: materialno nelinearna analiza brez geometrijskih nepopolnosti
  - Kriteriji
    - Najvišji nivo obtežne poti



$$F_{_{Ed}} \leq F_{_{Rd}}$$

Figure 8.5: Definition of plastic reference resistance ratio  $r_{\text{Rpl}}$  and critical buckling resistance ratio  $r_{\text{Rer}}$  derived from global MNA and LBA analyses

Misesova ekvivalentna plastična deformacija

$$\varepsilon_{p.eq.Ed} \le 50 \left(\frac{f_y}{E}\right) \approx 50 \cdot 0,001 = 0,05 \ (za \ S235)$$

## LS2: Nizko-ciklično utrujanje

- Napetostna metoda
  - merodajna sprememba
     obtežbe, ki povzroča
     ponavljajoče se plastične
     deformacije
  - pri rezervoarjih običajno kontrola ni kritična (polnjenje – praznjenje:  $\Delta \sigma$  - od 0 do  $\sigma_{max}$ , ni večjih obtežb v drugo smer!)



**Bild 4.** Dehnungsverlauf bei Überschreitung der Fließgrenze

- kontrola utrujanja:

$$\Delta \sigma_{eq.Ed} = \sqrt{\Delta \sigma_{x.Ed}^2 - \Delta \sigma_{x.Ed} \Delta \sigma_{\theta.Ed} + \Delta \sigma_{\theta.Ed}^2 - 3\Delta \tau_{x\theta.Ed}}$$
$$\Delta \sigma_{eq.Ed} \leq \Delta f_{eq.Rd} = 2f_y$$

$$\gamma_{G} = 1,00$$
$$\gamma_{Q} = 1,00$$

# LS2: Nizko-ciklično utrujanje

- Direktna metoda
  - $-\Delta\sigma$  določena s formulami iz aneksa C SIST EN 1993-1-6
- Nelinearna globalna analiza
  - Materialno nelinearna analiza brez nepopolnosti
  - akumulirana Misesova plastična defornmacija:

$$\varepsilon_{p.eq.Ed} = n\Delta\varepsilon_{p.eq.Ed} \le 25\left(\frac{f_{yd}}{E}\right)$$

n =število ciklov

- Upoštevamo samo membranske napetosti
- Prazen rezervoar streha, veter

$$\gamma_G = 1,35$$
$$\gamma_Q = 1,50$$

- Vertikalni uklon notranji pritisk (elast., plast.)
- Robni pogoji
- Tolerance izdelave trije razredi
- Napetostna metoda: dodatek D SIST EN 1993-1-6
- Nelinearna globalna analiza
  - MNA + LBA
  - GMNIA (nepopolnosti)
- Direktna metoda ne obstaja

Robni pogoji



igure 8.1: Schematic examples of boundary conditions for limit state LS3

- Tolerance izdelave trije razredi: A, B in C
  - Plašč: ostopanje od kroga



# Table 8.1: Recommended values for out-of-roundness tolerance parameter $U_{r,max}$

|                                           | Diameter range | d [m] ≤<br>0,50m | 0,50m < d [m] < 1,25m          | $1,25m \le d \ [m]$ |
|-------------------------------------------|----------------|------------------|--------------------------------|---------------------|
| Fabrication<br>tolerance<br>quality class | Description    |                  | Recommended value of $U_{r,r}$ | nax                 |
| Class A                                   | Excellent      | 0,014            | 0,007 + 0,0093(1,25-d)         | 0,007               |
| Class B                                   | High           | 0,020            | 0,010 + 0,0133(1,25-d)         | 0,010               |
| Class C                                   | Normal         | 0,030            | 0,015 + 0,0200(1,25-d)         | 0,015               |

- Plašč: slučajna ekscentričnost pri stikovanju pločevin



Figure 8.3: Accidental eccentricity and intended offset at a joint

# Table 8.2: Recommended values for maximum permitted accidental eccentricities

| Fabrication tolerance quality class | Description | Recommended values for maximum<br>permitted accidental eccentricity |
|-------------------------------------|-------------|---------------------------------------------------------------------|
|                                     |             | e <sub>a,max</sub>                                                  |
| Class A                             | Excellent   | 2 mm                                                                |
| Class B                             | High        | 3 mm                                                                |
| Class C                             | Normal      | 4 mm                                                                |

Plašč: slučajna ekscentričnost pri stikovanju pločevin

$$U_e = \frac{e_a}{t} ali \frac{e_a}{t_{av}} \le U_{e.max}$$

(4) The accidental eccentricity parameter  $U_{\rm e}$  should satisfy the condition:

$$U_{\rm e} \le U_{\rm e,max} \qquad \dots (8.5)$$

where:

 $U_{e,max}$  is the accidental eccentricity tolerance parameter for the relevant fabrication tolerance quality class.

**NOTE 1:** Values for the accidental eccentricity tolerance parameter  $U_{e,max}$  may be obtained from the National Annex. The recommended values are given in Table 8.3.

Table 8.3: Recommended values for accidental eccentricity tolerances

| Fabrication tolerance quality class | Description | Recommended value of |
|-------------------------------------|-------------|----------------------|
|                                     |             | $U_{e,max}$          |
| Class A                             | Excellent   | 0,14                 |
| Class B                             | High        | 0,20                 |
| Class C                             | Normal      | 0,30                 |

**NOTE 2:** Intended offsets are treated within D.2.1.2 and lapped joints are treated within D.3. These two cases are not treated as imperfections within this standard.

- Plašč: lokalne nepopolnosti

$$l_{gx} = 4\sqrt{rt}$$

$$l_{g\theta} = 2, 3(l^2 r t)^{0,25} \le r$$

$$l_{gw} = 25t_{\min} \le 500mm$$





Measurement on a meridian (see 8.4.4(2)a) a)



b) First measurement on a circumferential circle (see 8.4.4(2)a)



First measurement on a meridian across a weld c) (see 8.4.4(2)a)





e)



Second measurement across a weld with special f) gauge (see 8.4.4(2)c)

Measurements on circumferential circle across weld (see 8.4.4(2)c)

Figure 8.4: Measurement of depths  $\Delta w_0$  of initial dimples

d)

– Plašč: lokalne nepopolnosti

$$U_{0i} = \frac{\Delta W_{0i}}{l_{gi}} \le U_{0.\max} \quad , \quad i = x, \theta, w$$

#### Table 8.4: Recommended values for dimple tolerance parameter $U_{0,max}$

| Fabrication tolerance quality class | Description | Recommended value of $U_{0,\max}$ |
|-------------------------------------|-------------|-----------------------------------|
| Class A                             | Excellent   | 0,006                             |
| Class B                             | High        | 0,010                             |
| Class C                             | Normal      | 0,016                             |

• Napetostna metoda: dodatek D – SIST EN 1993-1-6



Figure 2.6 Typical curve of buckling load factor against slenderness for a shell

## Vertikalni uklon

$$\sigma_{x,Rd} = \chi_x f_y / \gamma_{M1}$$

Redukcijski faktor uklona  $\chi_x$  se določi v odvisnosti od vrednosti  $\lambda$ 

$$\chi_{x} = 1 \qquad za \qquad \overline{\lambda}_{x} \leq \overline{\lambda}_{0}$$

$$\chi_{x} = 1 - \beta_{x} \left( \frac{\overline{\lambda}_{x} - \overline{\lambda}_{0}}{\overline{\lambda}_{p} - \overline{\lambda}_{0}} \right)^{\eta_{x}} \qquad za \qquad \overline{\lambda}_{0} \leq \overline{\lambda}_{x} < \overline{\lambda}_{p,x}$$

$$\chi_{x} = \frac{\alpha_{x}}{\overline{\lambda}_{x}^{2}} \qquad za \qquad \overline{\lambda}_{p,x} \leq \overline{\lambda}_{x}$$

Vrednost mejne plastične vitkosti:

$$\overline{\lambda}_{p,x} = \sqrt{\frac{\alpha_x}{1 - \beta_x}}$$

Relativna vitkosti:

$$\overline{\lambda}_{x} = \sqrt{f_{yk} / \sigma_{x,Rcr}}$$

 $\sigma_{x,Rcr}$  določimo skladno z dodatkom D.

$$\sigma_{x,Rcr} = 0,605EC_x \frac{t}{r}$$

Brezdimenzionalni dolžinski parameter  $\omega$ 

$$\omega = \frac{l}{r}\sqrt{\frac{r}{t}} = \frac{l}{\sqrt{rt}}$$

Elastični redukcijski faktor nepopolnosti

$$\alpha_x = \frac{0,62}{1+1,91(\Delta W_k / t)^{1,44}} \qquad \Delta W_k = \frac{1}{Q}\sqrt{\frac{r}{t}} \cdot t$$

Preglednica D.2: Vrednosti faktorja kvalitete izdelave Q

| Fabrication tolerance | Description | Q  |
|-----------------------|-------------|----|
| quality class         |             |    |
| Class A               | Excellent   | 40 |
| Class B               | High        | 25 |
| Class C               | Normal      | 16 |

Vrednosti ostalih parametrov:

$$\overline{\lambda}_{x0} = 0,20 \qquad \beta_x = 0,60 \qquad \eta_x = 1,0$$

Za dolge cilindre, kjer velja:

$$\frac{r}{t} \le 150 \quad in \quad \omega \le 6 \left(\frac{r}{t}\right) \quad in \quad 500 \le \frac{E}{f_{y,k}} \le 1000, \text{ je:}$$
$$\overline{\lambda}_{x0} = 0, 20 + 0, 10 \left(\frac{\sigma_{xE,M}}{\sigma_{xE}}\right)$$

Uklonska kontrola ni potrebna, kadar je:

$$\frac{r}{t} \le 0,03 \frac{E}{f_{yk}}$$

#### PROCEDURE FOR THE DESIGN CHECK OF CYLINDRICAL SHELLS SUBJECT TO AXIAL COMPRESSION



Uklon v obodni smeri

$$\sigma_{\theta,Rd} = \chi_{\theta} f_{y} / \gamma_{M1}$$

Redukcijski faktor uklona  $\chi_{\theta}$  se določi v odvisnosti od vrednosti  $\lambda$ 

$$\begin{split} \chi_{\theta} &= 1 \qquad za \qquad \overline{\lambda}_{\theta} \leq \overline{\lambda}_{0} \\ \chi_{\theta} &= 1 - \beta_{\theta} \left( \frac{\overline{\lambda}_{\theta} - \overline{\lambda}_{0}}{\overline{\lambda}_{p} - \overline{\lambda}_{0}} \right)^{\eta} \quad za \qquad \overline{\lambda}_{0} \leq \overline{\lambda}_{\theta} < \overline{\lambda}_{p,\theta} \\ \chi_{\theta} &= \frac{\alpha_{\theta}}{\overline{\lambda}_{\theta}^{2}} \qquad za \qquad \overline{\lambda}_{p,\theta} \leq \overline{\lambda}_{\theta} \end{split}$$

Vrednost mejne plastične vitkosti:

$$\overline{\lambda}_{p,\theta} = \sqrt{\frac{\alpha_{\theta}}{1 - \beta_{\theta}}}$$

Relativna vitkost:

$$\overline{\lambda}_{\theta} = \sqrt{f_{yk} / \sigma_{\theta, Rcr}}$$

 $\sigma_{\theta,Rcr}$  določimo skladno z dodatkom D.

$$\sigma_{\theta,Rcr} = 0,92E\frac{C_{\theta}}{\omega}\frac{t}{r}$$

Preglednica D.5: Vrednosti faktorja kvalitete izdelave  $\alpha_{\theta}$ 

| Fabrication tolerance quality class | Description | $lpha_{	heta}$ |
|-------------------------------------|-------------|----------------|
| Class A                             | Excellent   | 0,75           |
| Class B                             | High        | 0,65           |
| Class C                             | Normal      | 0,50           |

Vrednosti ostalih parametrov:

$$\overline{\lambda}_{\theta 0} = 0,40$$
  $\beta_{\theta} = 0,60$   $\eta_{\theta} = 1,0$ 

Uklonska kontrola ni potrebna, kadar je :

$$\frac{r}{t} \le 0,21 \sqrt{\frac{E}{f_{yk}}}$$

### Ekvivalentni zunanji pritisk vetra:

$$q_{eq} = k_w q_{w,\max}$$

$$k_{w} = 0,46 \left( 1 + 0, 1 \sqrt{\frac{C_{\theta}}{\omega} \frac{r}{t}} \right) \qquad 0,65 \le k_{w} \le 1$$

 $C_{\theta}$  se določi po preglednici D.3 v skladu z robnimi pogoji cilindra.



# Pritisk vetra





#### PROCEDURE FOR THE DESIGN CHECK OF CYLINDRICAL SHELLS SUBJECT TO CIRCUMFERENTIAL COMPRESSION



#### PROCEDURE FOR THE DESIGN CHECK OF CYLINDRICAL SHELLS SUBJECT TO SHEAR<sup>1</sup>



# Elastični vertikalni uklon ob upoštevanju notranjega pritiska

Elastični redukcijski faktor za imperfektnost  $\alpha_x$  je potrebno nadomestiti z elastičnim redukcijskim faktorjem za imperfektnost v primeru notranjega pritiska  $\alpha_{xp}$ :

$$\alpha_{x} \rightarrow \alpha_{xp} = \min \begin{cases} \alpha_{xpe} \\ \alpha_{xpp} \end{cases}$$

$$\alpha_{xpe} = \alpha_x + (1 - \alpha_x) \left[ \frac{\overline{p}_s}{\overline{p}_s + 0, 3 / \alpha_x^{0,5}} \right]$$
$$\overline{p}_s = \left( \frac{p_s}{\sigma_{x,Rcr}} \right) \left( \frac{r}{t} \right)$$

 $p_s$  **najmanjša** računska vrednost notranjega pritiska v obravnavani točki, ki sodeluje v kombinaciji s tlakom v smeri osi cilindra.

Elastoplastičen vertikalni uklon ob prisotnosti notranjega pritiska – slonova noga

$$\alpha_{xpp} = \left\{ 1 - \left(\frac{\overline{p}_g}{\overline{\lambda}_x^2}\right)^2 \right\} \left[ 1 - \frac{1}{1,12 + s^{3/2}} \right] \left[ \frac{s^2 + 1,21\overline{\lambda}_x^2}{s(s+1)} \right]$$
$$\overline{p}_g = \left(\frac{p_g}{\sigma_{x,Rcr}}\right) \left(\frac{r}{t}\right)$$
$$s = \frac{1}{400} \cdot \frac{r}{t}$$

 $p_g$  **največja** računska vrednost notranjega pritiska v obravnavani točki, ki lahko sodeluje v kombinaciji s tlakom v smeri osi cilindra.

#### Vertikalni uklon – notranji pritisk procedure for the design check of cylindrical shells subject to meridional compression and internal pressure

The pressurized meridional buckling strength should be verified analogously to the unpressurised meridional buckling strength. However the unpressurised elastic imperfection factor  $\alpha_x$  may be replaced by the pressurized elastic imperfection factor  $\alpha_{xp}^2$ 



# Kontrola stabilnosti - interakcija

V odvisnosti od obtežbe in napetostnega stanja je potrebno opraviti eno ali več izmed spodaj navedenih kontrol za največje vrednosti posameznih membranskih napetosti:

$$\sigma_{x,Ed} \leq \sigma_{x,Rd} \qquad \qquad \sigma_{\theta,Ed} \leq \sigma_{\theta,Rd} \qquad \qquad \tau_{x\theta,Ed} \leq \tau_{x\theta,Rd}$$

V primeru, ko je v obravnavanem obtežnem stanju prisotna kombinacija membranskih napetosti, je potrebno upoštevati kontrolo interakcije napetosti:

$$\left(\frac{\sigma_{x,Ed}}{\sigma_{x,Rd}}\right)^{k_x} - k_i \left(\frac{\sigma_{x,Ed}}{\sigma_{x,Rd}}\right) \left(\frac{\sigma_{\theta,Ed}}{\sigma_{\theta,Rd}}\right) + \left(\frac{\sigma_{\theta,Ed}}{\sigma_{\theta,Rd}}\right)^{k_\theta} + \left(\frac{\tau_{x\theta,Ed}}{\tau_{x\theta,Rd}}\right)^{k_\tau} \le 1$$

 $k_x$ ,  $k_{\theta}$ ,  $k_{\tau}$  so interakcijski faktorji uklona, definirani v aneksu D.

V primeru, ko sta  $\sigma_{x,Ed}$  ali  $\sigma_{\theta,Ed}$  **natezni** za njuno vrednost vzamemo vrednost nič.

# Kontrola stabilnosti - interakcija

Interakcijski faktorji uklona:

$$k_{x} = 1,25 + 0,75 \chi_{x}$$

$$k_{\theta} = 1,25 + 0,75 \chi_{\theta}$$

$$k_{\tau} = 1,75 + 0,25 \chi_{\tau}$$

$$k_{i} = (\chi_{x} \chi_{\theta})^{2}$$

 $\chi_x$ ,  $\chi_\theta$ ,  $\chi_\tau$  so uklonski redukcijski faktorji

## Kontrola stabilnosti - interakcija

 $\ell_{\rm int} = 1,3 \ r \sqrt{r/t}$ 

... (D.53)



Figure D.3: Examples of interaction-relevant groups of membrane stress components

 $l_R = 0, 1L \rightarrow ni \text{ int } erakcije$ 

$$\ell_{b} = \ell_{a} \text{ and } \ell_{c} = L - 2\ell_{a}, \text{ if } \ell_{a} \le L/3$$
$$\ell_{b} = \ell_{c} = 0,5 (L - \ell_{a}), \text{ if } L/3 < \ell_{a} \le L/2$$

... (D.56) ... (D.57)

leff

Uklon v obodni smeri





(c) Equivalent single cylinder with uniform wall thickness

П

II п

п



Figure D.5: Transformation of stepped cylinder into equivalent cylinder





Figure D.4: Intended offset e<sub>0</sub> in a butt-jointed shell

wall thickness



Za vsak pas j:



$$\sigma_{\theta, Rcr, j} = \left(\frac{t_a}{t_j}\right) \sigma_{\theta, Rcr, eff}$$

$$\sigma_{\theta, \mathrm{Rcr}, \mathrm{Eff}} \rightarrow l_{\mathrm{eff}}, t_{\mathrm{a}}, C_{\theta} = 1, 0, \omega_{\mathrm{j}}$$

$$\sigma_{_{ heta,Ed,j}} \leq \sigma_{_{ heta,Rd,j}}$$

$$\sigma_{\theta, Ed, j} = n_{\theta, Ed} / t_j$$

 $\sigma_{\theta, Ed, j, \text{mod}} = \max\left(n_{\theta, Ed}\right) / t_j$ 

Uklon v obodni smeri





Nekonstantna debelina stene plašča Ekvivalentni zunanji pritisk vetra:  $q_{eq} = k_w q_{w,max}$ 

$$k_w = 0,46(1+0,037m_{cr}) \le 1,0$$
  
 $m_{cr} \ge 10, m_{cr} = ...$ 

 $C_{\theta}$  se določi po preglednici D.3 v skladu z robnimi pogoji cilindra.



$$\ell_{\rm b} = \ell_{\rm a}$$
 and  $\ell_{\rm c} = L - 2\ell_{\rm a}$ , if  $\ell_{\rm a} \le L/3$ 

 $\ell_{\rm b} = \ell_{\rm c} = 0,5 \, (L - \ell_{\rm a}), \quad \text{if } L/3 < \ell_{\rm a} \le L/2$ 

... (D.57)

... (D.56)

Uklon v vertikalni smeri



Figure D.5: Transformation of stepped cylinder into equivalent cylinder

Vsak pas j z dolžino  $I_j$  se obravnava kot nadomestna cilindrična lupina dolžine I = L in debeline t =  $t_j$ .

L = višina celotnega rezervoarja ali razdalja med ojačilnimi obroči

# Dimenzioniranje obročev



Figure 17.8 Example of a ring stiffener, designed with an equivalent imperfection shape of  $m = m_{cr} = 6$ 

$$q_{cr}b_{ef} = \frac{3EI_o}{r^3} \qquad m = 2$$

# Dimenzioniranje obročev



 $\eta_2 = \begin{cases} 1,5 & \text{hladno oblikovane ojačitve} \\ 1,3 & \text{vroče valjane ali varjene ojačitve} \end{cases}$ 

Materialno nelinearna analiza (r<sub>pl</sub>) + uklonska analiza (r<sub>cr</sub>)

$$\overline{\lambda} = \sqrt{\frac{r_{pl}}{r_{cr}}} \quad \rightarrow \quad \chi \quad \rightarrow \quad r_{Rd} = \frac{\chi r_{pl}}{\gamma_{M1}}$$

- Geometrijsko in materialno nelinearna analiza z nepopolnostmi
  - določitev nepopolnosti (lastne uklonske oblike + lokalne nepopolnosti)
  - Kalibracija orodja



Figure 8.6: Definition of buckling resistance from global GMNIA analysis

# LS4: Visoko-ciklično utrujanje

- Običajno ni merodajno mejno stanje za rezervoarje
- Elastična analiza za določanje  $\Delta \sigma$
- Upoštevaj SIST EN1993-1-9 in SIST EN1993-3-2

$$\gamma_{Ff} \Delta \sigma_{E} \leq \frac{\Delta \sigma_{R}}{\gamma_{Mf}}$$

$$\gamma_{_{Ff}} = 1,0$$
  
 $\gamma_{_{Mf}} = 1,1$ 

• **P** - Potresni vplivi ( $\gamma = 1,0$ )



**Bild 15.** Verformungen (a) und Druckverteilungen entsprechend EC 8-4 [26] (b) und den neuseeländischen Empfehlungen [29] (c)

# Potresna analiza rezervoarjev

### Nihajni čas

Nihajni čas (valovanja) T<sub>s</sub> se določi kot:

 $T_{\rm S} = 1,8 K_{\rm S} D^{1/2}$ 

Faktor  $K_S$  se določi iz spodnje slike na podlagi razmerja D/H<sub>T</sub>



- D premer rezervoarja v m;
- H<sub>T</sub> maksimalna višina polnjenja rezervoarja v m.

#### Koeficient pospeška G<sub>2</sub>

G<sub>1</sub> koeficient pospeška določen iz seizmološke karte;.

$$G_{2} = \begin{cases} \frac{1,25G_{1}j}{T_{s}} & \text{za} & T_{s} \leq 4,5 \\ \frac{5,625G_{1}j}{T_{s}^{2}} & \text{za} & 4,5 < T_{s} \end{cases}$$

amplifikacijski faktor določen iz spodnje tabele.

| Site amplification factor |                 | Soil profile type |                 |
|---------------------------|-----------------|-------------------|-----------------|
|                           | A <sup>1)</sup> | B <sup>2)</sup>   | C <sup>3)</sup> |
| j                         | 1,0             | 1,2               | 1,5             |

<sup>1)</sup> Soil profile type A is either of two profiles as follows.

a) Rock of any characteristic, either shale-like or crystalline in nature. Such material may be characterized by a shear wave velocity greater than 760 m/s

#### or

1

b) Stiff soil conditions where the soil depth is less than 60 m and the soil types overlying rock are stable deposits of sands, gravels, or stiff clays.

<sup>2)</sup> Soil profile type B is a profile with deep cohesionless or stiff clay conditions, including sites where the soil depth exceeds 60 m and the soil types overlying rock are stable deposits of sands, gravels, or stiff clays.

<sup>3)</sup> Soil profile type C is a profile with soft-to-medium-stiff clays and sands, characterized by 10 m or more of soft-to-medium-stiff clay with or without intervening layers of sand or other cohesionless soils.

NOTE In locations where the soil profile is not known in sufficient detail to determine the site amplification factor, *j*, the soil profile, C, should be assumed.

#### Določitev sodelujočih mas vsebine rezervoarja

- $T_1$  teža vsebine rezervoarja, ki niha skupaj z rezervoarjem, v kg;
- $T_2$  teža vsebine rezervoarja, ki niha z valovanjem tekočine, v kg;
- T<sub>T</sub> celotna teža vsebine rezervoarja.

Sodelujoči masi  $T_1$  in  $T_2$  določimo na podlagi spodnjega diagrma.



#### Določitev ročic do težišč sodelujočih mas T<sub>1</sub> in T<sub>2</sub>

- $X_1$  višina od dna rezervoarja do težišča sodelujoče mase  $T_1$ ;
- $X_2$  višina od dna rezervoarja do težišča sodelujoče mase  $T_2$ .

Ročici  $X_1$  in  $X_2$  določimo na podlagi spodnjega diagrma.



#### Prevrnitveni moment

- H<sub>L</sub> celotna višina rezervoarja v m;
- T<sub>r</sub> teža strehe rezervoarja v kg;
- T<sub>t</sub> teža valja rezervoarja v kg;
- X<sub>s</sub> višina od dna rezervoarja do težišča valja rezervoarja

