> GIS in prostorska/ krajinska arheologija

(1967)

> Nearest neighbour distances and quadrat counts

Christaller models, buffers
and Thiessen polygons

How raster DEM actually looks

How do we think it look

DMR

$$
\begin{array}{llllll}
N & 0 & 50 & 100 & 200 & 300 \\
& & & & &
\end{array}
$$

Thiessnovi poligoni

Site catchement/ najdiščno zajetje

－Greek sites
霓 30 min ．walk
弱 90 min ，walk
150 min ．walk
国 240 min．walk

Figure 1 Range Creek Canyon Relief Map

Figure 3
Cost Distance Breakdown

Figure 2

Najdiščno zajetje

Figure 4
Catchment Area

Hillshade
dary Value in
255

${ }^{255}$
${ }_{0}^{0}$

It appears to say "End of 5km catchment. Hunter-gatherers only beyond this point".

Site catchment

Figure 2: Left: Layers used in the modeling of agricultural potential, from the top: rooting depth, drainage, natural fertility, rainfall, gradient; Right: Spatial distribution of the agricultural potential and the archaeological sites included into the preliminary SCA. For the site affiliations, see legend in Figure 1 (map: O. Seitsonen).

Figure 3: Circular catchments (radius $=8 \mathrm{~km}$) showing the agricultural potential around the LSA sites (map: O.
Seitsonen).

Lokacijske analize

Priloga 11: Kolmogorov-Smirnov test distribucije evidentnih ka! telirjev glede na evklidsko oddaljenost od kartiranih vodnih virov znotraj obmo" ja analize.

Fig. 4 - Proximity measurements of archaeological sites from possible ancient road networks.

Figure 5. Iron Age I sites in the central West Bank and four possible first-order covariates: (a) elevation (light to dark ranges from 135-1010m ASL), (b) average annual rainfall (dark to light ranges from c. $335-720 \mathrm{~mm}$), (c) ridge landforms (darker is more likely to be geomphorphometrically classified as a ridge), (d) topographic wetness index summed over a local neighbourhood (darker is wetter), and (e) a prediction surface based on the three significant covariates (darker is higher point intensity).

Modeliranje gibanja

Fig. 6.4 The friction surface used in this experiment depicting relative cost units in terms of energy expended.

Fig. 6.5 Cost (in relative units) expended to get to node no. 9 from any point of our study area.

[^0]
"...current GIS can only make local decisions as to which neighbouring cell has the highest or lowest value - they incorporate no global knowledge of the landscape at all." (van Leusen 1999, p.218).

Fig. 6.25 Cost surface of node 199. Cost of walking in Joules / (Kg m).

Isokrone

50 km

Karta vidnosti (viewshed)

http://mapaspects.org/colca/research/viewshed/what_is.html

Binarna karta vidnosti

Kumulativne karte vidnosti

Figure 3 - Example viewshed map generated from one long barrow of the Salisbury Plain group (shown as a black dot).

Figure 4 - Cumulative viewshed maps overlain on elevation to show the relationship. Top: Avebury area, Bottom: Salisbury Plain. Both diagrams show the entire 20km square area which was studied (see figure 3).

Medsebojna vidnost

http://digitalhumanities.soton.ac.uk/blog/1276

Calculating a Cumulative Viewshed

Viewshed
Layers

Cumulative Viewshed

Higuchijevi indeksi

Fig. 5.20 Ranges established in the Higuchi viewshed. At short range, individual trees and details are recognizable, at middle range the forest is distinguished as a mass, and at long-distance range the forest becomes part of the background losing any distinctive identity. Photo by Chuck Szmurlo.

Fig. 6.42 Procedure to generate Higuchi viewshed. a) Binary viewshed; b) Calculation of Euclidean Distance; c) Reclassification to index established and d) Combination of both.

SRAP stratigraphic sondage

tell apex

Usmerjena karta vidnosti

Fig. 6.41 a) Simple binary viewshed; b) Calculation of Euclidean Direction; c) Reclassification of Euclidean Direction; d) Overlap of viewshed and Direction; e) Graphic showing the predominant direction of the

Mehka vidnost/fuzzy viewshed

 Temperature

Fig. 2. (A) The DEM within 1 km from Point 1 (elevation increases with darkness), and (B) the Boolean viewshed from Point 1.

Fig. 8. Fuzzy viewsheds from Point 1 with variable $5 A,(A) I=0,(B)$ I $=0.7$, and $(\mathrm{C}) 1=0.9$. Note that Figure Ba is the same as Figure 4 b . Darker areas have higher fuzzy nemborships.

Fig. 6. Fuzzy viewshods from Point 2 with (A) RMSE $=2$, (B) RMSE $=$ 7 , and (C) RMSE $=10$. Note that Figure 6b is the same as Figure 10a. Darker areas have higher fuzzy memberships.

Karta totalne vidnosti (total viewshed)

Figure 3. Total viewshed for the same region as in figure 2. Here, values represent the area from which a monument would be visible if built at each location. Lower values are in darker blue, with the highest values in red.

Group 3

Total viewshed, foreground

Group 3

Total viewshed, midground

Group 3

More visible

Less visible

Total viewshed

Trail 3

Total viewshed

Conclusions

 the landscape.
Barrows seem to deliberately change the visual configuration of landscape.

Conclusions

They all expressed the basic idea of belonging to the Poštela community.

Conclusions

Poštela landscape was polygon for expressing new ideas and messages.
Respecting, relating to or changing the existing spatial order reproduced or subverted the existing political configurations.

Zvočne krajine

Geostatistično modeliranje

[^0]: Fig. 6.8 The LCP calculated.

