Prostorska in krajinska arheologija vaje I

doc.dr. Dimitrij Mlekuž dmlekuz@gmail.com

Archaeology is and has always been
a spatial discipline

... but works with other kinds of data as well

| EHaris diagram - testgl | -\|a|x |
| :---: | :---: |
| Eile Find Yiew Report Preferences Help | |
| | |

Landscape perspective

Archaeological survey

Satellite imaging

Aerophotography

Systematic surface survey

Shovelpits

Coring

Topographic survey

Geophysics

Different kinds of data

Large volumes of data

南 $4 x$
 \because rysum

？
 ，wat 5in
路 ：
 10
0

年
里
年
品
den
名名
\qquad

Acquired in a very different ways

To help us understand what was going on in the landscape in the past

Large volumes of heterogenous data gathered in a number of ways, which have to be stored, manipulated, processed, integrated, visualized, interpreted and disseminated...

GIS

"...a powerful set of tools for collecting, storing, retrieving at will, transforming, and displaying spatial data from the real world for a particular set of purposes." (Burrough 1986)"
"An information system that is designed to work with data referenced by spatial or geographic coordinates. In other words a GIS is both a database system with specific capabilities for spatially-referenced data as well as a set of operations for working (analysis) with the data." (Star and Estes 1990)

GIS

anatomy

It is not a piece of software ...

http://www.esri.com/software/arcgis/index.html
ESRI

http://www.clarklabs.org/
http://grass.itc.it/
http://www.qgis.org/

Model of spatial phenomena

Model

Spatial phenomna

Modelling

Phenomenon
Model

Model

mapping feature A model is based on an original.
reduction feature A model only reflects a (relevant) selection of the original's properties.
pragmatic feature A model needs to usable in place of the original with respect to some purpose.

Georeferencing

Coordinate system

Geographic coordinate system

Projected coordinate system

Projections

Getting data into gis: total station

$$
\begin{array}{lll}
\text { id, } x, y, & z \\
1076, & 9.7191, & 52.7416,
\end{array}-0.4004
$$

Gridded data

Georeferencing

CMap-Arcinto

Bookmarks Insert Selection Iools Window Help

Thematic
layers

Geographical information system (GIS) works by creating a series of georeferenced overlays.

Sava floodplain: Krško polje

Raster vs vector data model

The "Paper Map World" (analog)

POINTS
Dot of ink
LINES

Dragged flow of ink
AREAS

Dragged and filled flow of ink

The "GIS Map World" (digital)

POINTS are stored as individual X, Y
coordinates (Vector) or as individual Column, Row cell entries in a grid (Raster)

LINES are stored as a set of mathematically connected X, Y coordinates (Vector) or as a set of connected grid cells (Raster)

AREAS are stored as a set of mathematically connected X, Y coordinates defining the boundary (Vector) or as a set of contiguous cells defining the interior (Raster)

Vectors

Locational component

Topological component

Attribute component

Metadata component

Locational component

Attribute component

id, type, date, name
1, archaeological site, Roman, Ammaia

Linking with external databases

id, name, type,no_amphorae,no_coarsewar 1, Ammaia, 1256,7654

Metadata

Projection
 Source
 Legend

Errors
 Copyright

Metadata

Table 3.6 A list of the metadata you would need to record when digitising a layer of thematic information from a map sheet.

Metadata	Why is it needed?
The projection system used to generate the map	So that you can ensure the spatial integrity of the overall spatial database by ensuring that all of the layers are derived from the same projection. Where projections do differ you can undertake the required re-projection of the data layers
Given the ability of the GIS to work at any scale the user	
selects, to ensure that data collected at a specific scale is	
not used at any scale larger. This is a procedure that	
would at best produce distorted results and at worst	
meaningless ones.	

Operations

Buffering

ST_LineString/ST_LineString ST_MultiLineString

ST_LineString/ST_LineString
Nil

Algebra: union, intersection, exclusion

Queries

list the sites within 500 m of a river;

list the roman sites within 500 m of a river with less than 80% of coarse pottery;

Planed systematic sampling

Location of shovel pits

External database

pit	count	weight	round ness	granitec	granite w		tilew	potc	potw	volume	grid
1	158	3455	1.59	9	892	23	992	11	173	0.04	X1
2	47	2437	2.04	11	984	4	114	5	144	0.04	X2
3	0	0	0	0	0	0	0	0	0	0.05	L6
4	0	0	0	0	0	0	0	0	0	0.05	L7
5	18	151	2.56	0	0	1	54	3	6	0.04	L9
6	22	249	2.23	0	0	0	0	9	152	0.05	L10
7	63	1077	2.32	1	371	14	400	9	33	0.03	L11
8	48	581	2.75	0	0	7	354	5	18	0.04	L12
9	43	802	2.23	0	0	6	498	5	22	0.04	L13
10	58	840	2.22	0	0	8	496	7	116	0.03	K12
11	70	1544	2.46	0	0	11	784	10	64	0.05	K11
12	56	1215	2.59	1	16	12	838	8	171	0.05	K10
13	36	1383	2.44	0	0	9	544	12	137	0.05	K9
14	27	916	2.26	0	0	6	434	2	12	0.04	K8
15	48	1113	2.04	1	180	7	582	5	46	0.03	K7
16	3	124	2	1	52	1	52	0	0	0.04	K6
17	6	78	2.67	0	0	0	0	2	22	0.05	J6
18	25	859	2.04	0	0	7	288	0	0	0.04	J7
19	19	1127	2.53	0	0	17	1095	2	32	0.05	J8
20	47	2388	2.23	0	0	11	1852	1	44	0.06	J9
21	43	1188	2.4	1	8	18	932	1	18	0.06	J10
22	39	1465	2.64	3	548	7	382	5	79	0.04	J11

Database join

Eile Edit View Bookmarks Insert Selection Iools Window Help

$$
\text { ㄱ:! \& ロ : } n \text { ? }
$$

$$
\text { Edroe } \cdot \uparrow \operatorname{Trasen}
$$

Rasters
Pixel

1	1	1	1	1	1	1	3	3	3
1	1	1	1	1	1	1	3	3	3
1	1	1	1	1	1	3	3	3	3
1	1	1	2	2	2	2	3	3	3
1	1	1	2	2	2	2	3	3	3
1	1	1	2	2	2	2	3	3	3
1	1	1	1	2	2	2	3	3	3
1	1	1	1	1	1	3	3	3	3
1	1	1	1	1	1	1	3	3	3
1	1	1	1	1	1	1	1	3	3

Rasters

Resolution

Map algebra

Expression:
 OUTGRID = INGRID1 + INGRID2

Vectorisation

Changing numbers into images: Maps, diagrams, visualizations

"Pictures that emphasize what we already know-'security blankets' to reassure us-are frequently not worth the space they take. Pictures that have to be gone over with a reading glass to see the main point are wasteful of time and inadequate of effect. The greatest value of a picture is when it forces us to notice what we never expected to see." (Tukey 1977)

Lnanging numioers into images: maps, diagrams, visualizations

Exploring data: Maps, diagrams, visualizations

Future

3D GIS (Volumes)

Object oriented GIS

Problems

Representation of Time
Long term data storage and curation

