# Prostorska in krajinska arheologija vaje

doc. dr. Dimitrij Mlekuž <u>dmlekuz@gmail.com</u>



Archaeology is and has always been a spatial discipline

#### ... but works with other kinds of data as well



#### Landscape perspective



# Archaeological survey









## Satellite imaging



## Aerophotography







#### Systematic surface survey



## Shovelpits



## Coring





## Geophysics











#### Large volumes of data



#### Acquired in a very different ways









Has to be stored,processed, analysed, integrated, interpreted and disseminated

# To help us understand what was going on in the landscape in the past









Large volumes of heterogenous data gathered in a number of ways, which have to be stored, manipulated, processed, integrated, visualized, interpreted and disseminated...

# ?



"...a powerful set of tools for collecting, storing, retrieving at will, transforming, and displaying spatial data from the real world for a particular set of purposes." (Burrough 1986) "

"An information system that is designed to work with data referenced by spatial or geographic coordinates. In other words a GIS is both a database system with specific capabilities for spatially-referenced data as well as a set of operations for working (analysis) with the data." (Star and Estes 1990)



#### It is not a piece of software ...



#### http://www.esri.com/software/arcgis/index.html



http://www.clarklabs.org/

Meeting the Challenges of Environmental Decision Making with GIS







http://www.qgis.org/

# Model of spatial phenomena



#### Spatial phenomna





#### Phenomenon

Model



#### Model

*mapping feature* A model is based on an original.

reduction feature A model only reflects a (relevant) selection of the original's properties.

pragmatic feature A model needs to usable in place of the original with respect to some purpose.

#### Georeferencing

# Latitude 35° 45' 20" Longitude -121° 28' 52"



#### Coordinate system





#### Projected coordinate system



#### Projections



#### Getting data into gis: total station



| 04                         |
|----------------------------|
| 82                         |
| 31                         |
| 32                         |
| .6                         |
| ) 8 2<br>3 1<br>3 2<br>- 6 |

#### Gridded data






# Georeferencing



Monday, October 8, 12

# Thematic layers

Geographical information system (GIS) works by creating a series of georeferenced overlays.















# Raster vs vector data model





Monday, October 8, 12

# Vectors



Locational component

# Topological component

Attribute component

Metadata component

# Locational component





#### 3 is connected to 4

# Attribute component

id,type,date,name
1, archaeological site, Roman, Ammaia



# Linking with external databases



#### Metadata



Projection Source Legend Errors Copyright

...

# Metadata

**Table 3.6** A list of the metadata you would need to record when digitising a layer of thematic information from a map sheet.

| Metadata                                                                           | Why is it needed?                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The projection system used to generate the map                                     | So that you can ensure the spatial integrity of the overall<br>spatial database by ensuring that all of the layers are<br>derived from the same projection. Where projections do<br>differ you can undertake the required re-projection of the<br>data layers                                                                                                                                              |
| The scale of the source map                                                        | Given the ability of the GIS to work at any scale the user<br>selects, to ensure that data collected at a specific scale is<br>not used at any scale larger. This is a procedure that<br>would at best produce distorted results and at worst<br>meaningless ones.                                                                                                                                         |
| The medium and integrity of the map sheet                                          | To help account for any RMS errors encountered                                                                                                                                                                                                                                                                                                                                                             |
| The map publisher and copyright details                                            | There may well be restrictions imposed upon the digital copying and subsequent use and distribution of any map sheets. As a result it is important to record this information.                                                                                                                                                                                                                             |
| The RMS error encountered on digitising the layer                                  | To provide a record of the errors associated with the data<br>layer —there is little point undertaking an analysis to<br>centimetre precision if a given layer has associated errors<br>of 2.5 metres! As errors can become compounded during<br>the course of the various analytical possibilities offered<br>by the GIS it is crucial that all error sources and<br>assessments are carefully monitored. |
| The control points utilised and their real-world co-<br>ordinates                  | To provide a record of the georeferencing information employed.                                                                                                                                                                                                                                                                                                                                            |
| The coding and legend schemes used to name layers and label features within layers | To provide a simple reference to the various codes<br>utilised, codes that may well seem obvious when<br>designated but in a years time may not be so readily<br>apparent!                                                                                                                                                                                                                                 |

# Operations



Buffering

Algebra: union, intersection, exclusion

# Queries



list the sites within 500 m of a river;

list the roman sites within 500 m of a river with less than 80% of coarse pottery;

#### Planed systematic sampling



# Location of shovel pits



Monday, October 8, 12







Monday, October 8, 12

# External database

| pit | count | weight | round<br>ness | granitec | granite<br>w | tilec | tilew | potc | potw | volume | grid |
|-----|-------|--------|---------------|----------|--------------|-------|-------|------|------|--------|------|
| 1   | 158   | 3455   | 1.59          | 9        | 892          | 23    | 992   | 11   | 173  | 0.04   | X1   |
| 2   | 47    | 2437   | 2.04          | 11       | 984          | 4     | 114   | 5    | 144  | 0.04   | X2   |
| 3   | 0     | 0      | 0             | 0        | 0            | 0     | 0     | 0    | 0    | 0.05   | L6   |
| 4   | 0     | 0      | 0             | 0        | 0            | 0     | 0     | 0    | 0    | 0.05   | L7   |
| 5   | 18    | 151    | 2.56          | 0        | 0            | 1     | 54    | 3    | 6    | 0.04   | L9   |
| 6   | 22    | 249    | 2.23          | 0        | 0            | 0     | 0     | 9    | 152  | 0.05   | L10  |
| 7   | 63    | 1077   | 2.32          | 1        | 371          | 14    | 400   | 9    | 33   | 0.03   | L11  |
| 8   | 48    | 581    | 2.75          | 0        | 0            | 7     | 354   | 5    | 18   | 0.04   | L12  |
| 9   | 43    | 802    | 2.23          | 0        | 0            | 6     | 498   | 5    | 22   | 0.04   | L13  |
| 10  | 58    | 840    | 2.22          | 0        | 0            | 8     | 496   | 7    | 116  | 0.03   | K12  |
| 11  | 70    | 1544   | 2.46          | 0        | 0            | 11    | 784   | 10   | 64   | 0.05   | K11  |
| 12  | 56    | 1215   | 2.59          | 1        | 16           | 12    | 838   | 8    | 171  | 0.05   | K10  |
| 13  | 36    | 1383   | 2.44          | 0        | 0            | 9     | 544   | 12   | 137  | 0.05   | K9   |
| 14  | 27    | 916    | 2.26          | 0        | 0            | 6     | 434   | 2    | 12   | 0.04   | K8   |
| 15  | 48    | 1113   | 2.04          | 1        | 180          | 7     | 582   | 5    | 46   | 0.03   | K7   |
| 16  | 3     | 124    | 2             | 1        | 52           | 1     | 52    | 0    | 0    | 0.04   | K6   |
| 17  | 6     | 78     | 2.67          | 0        | 0            | 0     | 0     | 2    | 22   | 0.05   | J6   |
| 18  | 25    | 859    | 2.04          | 0        | 0            | 7     | 288   | 0    | 0    | 0.04   | J7   |
| 19  | 19    | 1127   | 2.53          | 0        | 0            | 17    | 1095  | 2    | 32   | 0.05   | J8   |
| 20  | 47    | 2388   | 2.23          | 0        | 0            | 11    | 1852  | 1    | 44   | 0.06   | J9   |
| 21  | 43    | 1188   | 2.4           | 1        | 8            | 18    | 932   | 1    | 18   | 0.06   | J10  |
| 22  | 39    | 1465   | 2.64          | 3        | 548          | 7     | 382   | 5    | 79   | 0.04   | J11  |



Monday, October 8, 12

#### Database join



Monday, October 8, 12





#### Rasters



#### Rasters



## Resolution



- Smaller cell size
- Higher resolution
- Higher feature spatial accuracy
- Slower display
- Slower processing
- Larger file size

- Larger cell size
- Lower resolution
- Lower feature spatial accuracy
- Faster display
- Faster processing
- Smaller file size





30 meter





# Map algebra



INGRID2

Expression: OUTGRID = INGRID1 + INGRID2

# Vectorisation





# Changing numbers into images: Maps, diagrams, visualizations

"Pictures that emphasize what we already know—'security blankets' to reassure us—are frequently not worth the space they take. Pictures that have to be gone over with a reading glass to see the main point are wasteful of time and inadequate of effect. The greatest value of a picture is when it forces us to notice what we never expected to see." (Tukey 1977)
## diagrams, visualizations



Monday, October 8, 12



## 240-ÎN 220-200-180-160 14( (m) allo 100 80-60od 1 do 8 🛛 40od 9 do 16 nad 17 20-0-20 220 240 Ò 40 100 200 260 280 60 80 120 140 160 180 razdalja (m)

## Darja Grosman, UL

## Exploring data: Maps, diagrams, visualizations



Monday, October 8, 12

Future

3D GIS (Volumes)

Object oriented GIS

Problems

Representation of Time

Long term data storage and curation

Monday, October 8, 12