4. vaja: Naloge in odgovori

V04-01

Poiščite nukleotidno zaporedje za človeški jetrni protein »fatty acid binding protein 1« (FABP1). Podrobneje si oglejte tisti zapis v bazo Nucleotide, ki vsebuje celotno zaporedje mRNA/cDNA, ter identificirajte posamezne elemente zapisa (pomagajte si z http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html).

Koliko nukleotidov je v kodirajoči regiji (CDS) ter koliko aminokislinskih ostankov dolgo polipeptidno verigo le-ta kodira?

Odgovor

Primer iskalnega pojma za iskanje v bazi NCBI Nucleotide (lahko uporabimo kar enostavno iskanje, saj v tem primeru dobimo že takoj relevantne rezultate): **fabp1 homo sapiens**

Eden od primernih zadetkov iskanja (ki vsebuje celotno CDS + stop kodon, kar delno razberemo že iz imena) je <u>http://www.ncbi.nlm.nih.gov/nuccore/NM 001443.2</u>

Pozor, eden izmed zadetkov se začne s start kodonom in vsebuje zaporedje do stop kodona, brez slednjega – v tem primeru torej ne gre za (bolj ali manj) celotno zaporedje cDNA ampak samo za CDS brez STOP kodona.

Koda zapisa v bazo (zadetek s povezave zgoraj): NM_001443 (z dodano verzijo zapisa: NM_001443.2) V kodirajoči regiji (vključno s STOP kodonom) je **384 nt** (=498-**114**; pazite, da ne odšeteje enega nukleotida preveč!!!), ki kodirajo **127 ak-ostankov** dolgo polipeptidno verigo ((384-3)/3).

V04-02

Poiščite še genomsko zaporedje za človeški protein FABP1. Pomagajte si s povezavo: <u>http://www.ncbi.nlm.nih.gov/guide/howto/obtain-genomic-sequence/</u>

Kako se to zaporedje razlikuje od zaporedja cDNA?

Kje v genomu (kromosom, ročica, lokus) se ta gen nahaja in koliko eksonov in intronov vsebuje?

Odgovor

Chilles A

Zaporedje cDNA smo že našli v prejšnjem koraku, tako da do genomskega zapisa pridemo enostavno s povezavo Gene, ki jo najdemo na strani zapisa za cDNA na desni strani (**slika 1**).

000	+	lomo sapiens fatty acid bin	ding protein 1, liver (ABP1), mRNA - Nucleoti	ide – NCBI		
	2 + 8 www.n	cbi.nlm.nlh.gov/nuccore/NM			c	ander C	
AUTEORS	Lowe, J.B., Bogus	I,M.S., Sweetser,D.A.	, Elshourbagy, N.A		Amoion sixtea		
TITLE	Taylor, J.M. and Human liver fatt; cDNA and compara	lordon, J.I. v acid binding protein ive sequence analyses	. Isolation of a of orthologous a	full length nd	imaGenes	(imaGenes	
JOURNAL PUBMED	J. Biol. Chem. 2 3838313	105 50 (6), 3413-3417 (198	15)		UCSC Genome Browser [UCSC Geno	ome Browse	
REFERENCE	10 (bases 1 to 5	98)					
AUTHORS	Chan,L., Wei,C.F	, Li,W.H., Yang,C.Y.,	Ratner, P., Powna	11,Н.,			
	Gotto, A.M. Jr. a	nd Smith,L.C.	- Ball and and an inc.	-14	Related information		
TITLE	sequence. Function	acid binding protein	510	Related Sequences			
JOURNAL	J. Biol. Chem. 2	50 (5), 2629-2632 (198					
PUBMED	3838309			0000			
COMMENT	REVIEWED REFSEQ:	This record has been	taff. The	ccus			
	M10617.1 and BP2	3155.1.	Lake,	Components (Core)			
	On Mar 10, 2011	this sequence version	76.	Components (EST)			
				Full text in PMC			
	Summary: This ge:	he encodes the fatty a	in found in	Gene			
	conserved, cytop	asmic proteins that b	tty acida	Constitution of Child			
	and other hydropi	obic ligands. This pr	the ileal	CONTRACTOR IN COURSE			
	fatty acid bindi	ng protein) are also a	acids. It is	HomoloGene			
	thought that FAB	es roles include fatty	nsport, and	Map Viewer			
	mecanorran, (pro-	rues by wersey, war a		Master			
	Publication Note	This RefSeq record	of the	OMIM			
	publications that	are available for th	e the Cene	Probe			
	record to access	additional publicatio		Protein			
	##Evidence-Data-	TART##		Protein			
	Transcript exon	combination 1: AV68548	6.1, AV690098.1 [EC0:0000332]	PubMed		
	Ranged Therons	ERS0250	84. ERS025087 [EC	0:00003481	PubMed (RefSeq)		
	##Evidence-Data-	IND##			PubMed (Weighted)		
PRIMARY	REFSEQ_SPAN	PRIMARY_IDENTIFIER	PRIMARY_SPAN	COMP	SNP		
	1-15	AA345359.1 1-15 BC022287.1 1-84 M10617.1 1-462			Taxonomy		
	100-561				UniGene		
	562-598	BP263155.1	405-442		Unidene		
TEATURES	Location	/Qualifiers			UniSTS		
source	1598	"Hono sanions"			GEO Profiles		
	/mol ty	e="mRNA"					
	/db xre	="taxon:9606"					

Po pregledu zapisa takoj opazimo, da je to zaporedje bistveno daljše, saj vsebuje tudi introne. Število eksonov in intronov najlažje razberemo iz grafičnega prikaza**(slika 2)**

Ugotovimo, da gen vsebuje 3 introne, skupno število eksonov je tako 4 (dva vmes in dva na koncih).

Informacija o položaju gena na kromosomu pa je na voljo takoj v drugem razdelku (slika 3)

Slika 3 - lokacija na kromosomu

Genomic	context		
Location: Sequence:	2p11 Chromosome: 2; NC_000002.12 (8812298288128131, complement)		
	88027205 🕨	Chromosome 2 - NC_000002.12	[88186637 🅨
	KRC01	HIR4780 HIR4780 LOC101928347 H SMYD1 FABP1 H	THNSL2

Razberemo, da se gen nahaja na kromosomu 2, ročica p, lokus 11.

V genomski bazi si oglejte, kateri gen se nahaja na človeškem kromosomu 7, ročica q, lokus 31.2. Kam vse vodijo povezave, nanizane pri posameznem genu?

Odgovor

V primeru, ko poznamo lokacijo na kromosomu, ne vemo pa za kateri gen gre, je najlažji način grafično iskanje po genomskih mapah. V sklopu NCBI baze genom je temu namenjen prikaz »Map Viewer«. Pri delu z njim si lahko pomagamo z dodatnimi navodili <u>https://www.ncbi.nlm.nih.gov/projects/mapview/static/MapViewerHelp.html</u>. Do Map Viewerja lahko dostopamo že z osnovne spletne strani NCBI (https://www.ncbi.nlm.nih.gov/), kjer povezavo najdemo v razdelku »Featured« **(slika 4)**

Slika 4 - povezava do grafičnega prikaza genoma

POPULAR	FEATURED	NCBI INFORMATION
PubMed	Genetic Testing Registry	About NCBI
Bookshelf	PubMed Health	Research at NCBI
PubMed Central	GenBank	NCBINews
PubMed Health	Reference Sequences	NCBI FTP Site
BLAST	Gene Expression Omnibus	NCBI on Facebook
Nucleotide	Map Viewer	NCBI on Twitter
Genome	Human Genome	NCBI on YouTube
SNP	Mouse Genome	
Gene	Influenza Virus	
Protein	Primer-BLAST	
PubChem	Sequence Read Archive	

Na naslednji strani moramo izbrati organizem »Homo Sapiens« in stisniti GO. Odpre se nam spletna stran, na kateri so narisani vsi kromosomi **(slika 5)**

Slika 5 - kromosomi NCBI								(a	×)	/	ICB	I Ma	рV
PubMed			Nucle	eotide				Pr	otein				C
Search for		or	ı chror	noson	ne(s)				asse	mbly	All		
Map Viewer	Homo sap	oiens	(hun	nan) (genoi	me vi	ew						
Map Viewer Home	Annotation	Relea	ise 106	statis	tics	Switch	to pre	evious	build				
Map Viewer Help	1	n.											
Human Maps Help			1	n	n	0							
FTP	İ		ļ	İ	İ	ļ		Ì	Ì	1	ļ	}	ì
NCBI Resources		ų.	1	ų.	- U	1	1	1	1	1	- U	ų.	ų.
Assembly	1	2	3	4	5	6	Z	8	2	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>
CCDS										1			
Gene		1	Q	9	2	n		•	•	Ĭ	0		
Genome		ų.	1	ų.	ų.	Ŭ	Ŭ	Ŭ	Ű	ų.	- I	•	
RefSea	<u>14</u>	<u>15</u>	<u>16</u>	17	<u>18</u>	<u>19</u>	20	21	22	×	Υ	MT	

Zatem izberemo kromosom, po katerem želimo iskati – v našem primeru je to **kromosom 7**. Na strani, ki se nam odpre, lahko preberemo, da se na **ročici q, lokusu 31.2 nahaja gen s simbolom CFTR**. S klikom na simbol se odpre vnos za ta gen v bazi Gene. Če nas zanima kam vse vodijo dodatne povezave pri genu,

se lahko z miško postavimo na »Links« in se nam odpre okno, kot je to prikazano na **sliki 6.** Ne pozabite, da so lahko prikazane tudi druge povezave, kot v našem primeru - odvisno od nastavitev.

Slika 6 – predstavitev genov na kromosomu z odprtim prikazom razlage povezav Legion Displayed: 0-159M bp

Poiščite, kje (organ, tkivo, razvojna stopnja, ...) je pri človeku prisotna mRNA za nidogen. Naštejte nekaj organov/tkiv/... ter pri posameznih organih/tkivih/... dodajte kodo zapisa v bazo (»accession code«). Namig: uporabite bazo EST na NCBI. Rezultate lahko omejite z uporabo »Advanced Search«. Na kakšen način pa se danes najpogosteje določa nivo izražanja mRNA?

Odgovor

V bazi EST bomo našli več zadetkov. Vsak izmed njih ustreza mRNA, izolirani iz enega organa oz. tkiva. Točnejše informacije o organu, tkivu in razvojni stopnji najdemo znotraj vnosa v bazi. Pazimo, da gre res za nidogen 1 in da je organizem izvora človek.

Organ , tkivo	Razvojna stopnja	Accession code
Endotelijske celice		DN999908.1
Trebušna slinavka		CA771392.1
Trebušna slinavka	Zarodek	BU075210.1
Možgani; anaplastični		AI498817.1
oligodendrogliom		
Trebušna slinavka	adenokarcinom	AI818389.1
Jetra		AI264298.1
Maternica	Tumor	AA300269.1

Nekaj primerov zadetkov:

Nivo izražanja se danes najpogosteje določa z uporabo mikromrež.

Kakšna je razlika med EST in GSS? Poiščite GSS zapis za človeški FABP1 in si ga oglejte ter primerjajte z zapisom EST.

Odgovor

Osnovna razlika je v tem, da EST vsebuje zapise mRNA, GSS pa zapise DNA. Ko piščemo zapis za človeški FABP1 v bazi GSS takoj vidimo, da za razliko od večoh zapisov v bazi EST, v bazi GSS obstaja le en zapis za omenjeni protein (<u>https://www.ncbi.nlm.nih.gov/nucgss/39771898</u>). Vnos v bazi GSS vsebuje le zapis, ki kodira izbrani protein, ni pa nobenih podatkov o tkivu, razvojni stopnji ipd., saj vnos ne vsebuje podatkov o izražanju proteina. V bazi EST, kot smo ugotovili že v prejšnji nalogi so te podatki prisotni.

V04-06

V katero bolezen je vključen protein superoksid dizmutaza 1? Kaj je pravzaprav vzrok za to bolezen? Pomagajte si z bazo OMIM (<u>http://www.ncbi.nlm.nih.gov/omim</u> ali <u>http://omim.org</u>) ter si oglejte, kaj vse zapis v to bazo vsebuje.

Odgovor

Podatke o boleznih, v katere so vključeni proteini, najlažje najdemo v bazi OMIM. V tem primeru do pravega vnosa pridemo z iskanim geslom v angleškem jeziku »superoxide dysmutase 1« (http://omim.org/entry/147450?search=superoxide%20dysmutase%201&highlight=1%20dysmutase% 20superoxide). Zapis vsebuje alternativna imena proteina, simbol gena, lokacija gena na kromosomu, potek mapiranja, funkcija, zgodovina odkrivanja, tabela poznanih mutacij...

Iz zapisa lahko razberemo, da protein sodeluje pri amiotropni lateralni sklerozi (angl. *amyotrophic lateral sclerosis 1*). Vzrok za to bolezen še ni točno poznan, jasno pa je, da ima pomembno vlogo pri nastanku bolezni mutacije v zapisu za protein superoksid dismutaza 1

4. vaja – Baze in analiza nukleotidnih zaporedij (Miha Pavšič / marec 2014)

V04-07

V bazi Nucleotide poiščite cDNA zaporedje za človeški histon H3 iz družine 3B. Zaporedje v formatu FASTA shranite v tekstno datoteko. Iz zaporedja, ki ustreza kodirajoči regiji, odstranite številke, presledke, ... (orodje »DNA & Protein Sequence Cleaner«), in ga shranite v obliki formata FASTA v isto datoteko. Zabeležite si tudi kodo zapisa v bazo Nucleotide, da si boste lahko kasneje ogledali prevod v aminokislinsko zaporedje.

Odgovor

Zaporedje najdemo pod oznako **NM_005324.3.** Povezavo do FASTA zapisa najdemo na vrhu, tik pod naslovom. Da označimo kodirajočo regijo moramo najprej vklopiti funkcijo »Highlight Sequence Features« **(slika 7)** in po potrebi kliknemo še na CDS v razdelku »Features« **(slika 8)**

Slika 7 - vklop funkcije »Highlight Sequence Features«

Analyze this sequence 🔄)
Run BLAST	
Pick Primers	
Highlight Sequence Features	
Find in this Sequence	

Slika 8 - CDS

CDS

/note="upstream in-frame stop codon"
134..544
/gene="H3F3B"
/gene_synonym="H3.3B"
/note="H3 histone, family 3A"
/codon start=1

Označen del **(slika 9)** skopiramo v program za odstranjevanje številk in presledkov, ki ga lahko najdete v spletni učilnici med povezavami, direktna povezava pa je <u>http://www.cellbiol.com/scripts/cleaner/dna protein sequence_cleaner.php</u>.

Slika 9 – označen CDS

ORIGIN

1	gagcgcagag	cggtttggtc	gttcgttggg	cggtgctggt	ttttcgctcg	tcgactgcgg
61	ctcttcctcg	ggcagcggaa	gcggcgcggc	ggtcggagaa	gtggcctaaa	acttcggcgt
121	tgggtgaaag	aaaaatggccc	gaaccaagca	gactgctcgt	aagtccaccg	gtgggaaagc
181	cccccgcaaa	cagetggeea	cgaaagccgc	caggaaaagc	gctccctcta	ccggcggggt
241	gaagaagcct	categetaca	ggcccgggac	cgtggcgctt	cgagagattc	gtcgttatca
301	gaagtcgacc	gagetgetca	tccggaagct	gcccttccag	aggttggtga	gggagatcgc
361	gcaggatttc	aaaaccgacc	tgaggtttca	gagcgcagcc	atcggtgcgc	tgcaggaggc
421	tagcgaagcg	tacctggtgg	gtctgttcga	agataccaac	ctgtgtgcca	tccacgctaa
481	gagagtcacc	atcatgccca	aagacatcca	gttggctcgc	cggatacggg	gagagagagc
541	ttaa <mark>gtgaag</mark>	gcagttttta	tggcgttttg	tagtaaattc	tgtaaaatac	tttggtttaa
601	tttgtgactt	tttttgtaag	aaattgttta	taatatgttg	catttgtact	taagtcattc
661	catctttcac	tcaggatgaa	tgcgaaaagt	gactgttcac	agacctcagt	gatgtgagca
721	ctgttgctca	ggagtgacaa	gttgctaata	tgcagaaggg	atgggtgata	cttcttgctt
701	atastastas	statttatat	atattaataa	attattaaat	agatattaag	atoatoaoat

Vsebina datoteke je sedaj torej sledeča:

TAGCGAAGCGTACCTGGTGGGTCTGTTCGAAGATACCAACCTGTGTGCCATCCACGCTAAGAGAGTCACC TGGCGTTTTGTAGTAAATTCTGTAAAATACTTTGGTTTAATTTGTGACTTTTTTGTAAGAAATTGTTTA TAATATGTTGCATTTGTACTTAAGTCATTCCATCTTTCACTCAGGATGAATGCGAAAAGTGACTGTTCAC AGACCTCAGTGATGTGAGCACTGTTGCTCAGGAGTGACAAGTTGCTAATATGCAGAAGGGATGGGTGATA CTTCTTGCTTCCATGATGCATGTTTCTGTATGTTAATGACTTGTTGGGTAGCTATTAAGGTACTAGAGT TGATAAATGTGTACAGGGTCCTTTTGCAATAAAACTGGTTATGACTTGATCCAAGTGTTTAACAATTGGG GCTGTTAAGTCTGACCATACATCACTGTGATAGAATGTGGGCTTTTTCAAGGGTGAAGATACAAGTCTTA TGCATTTATAATAGCTATTTTATATATATTGTAGTATCAACATTTTTAAATTAAATGTTTTACATTCACAAG TGGTGGGGAGTCTTGTCATTAAGGTGTGTGTGTAATTTAGAGTCCAGTTGGTTTTCTTCTGACTGCACTTGT TCTCATAGTAGTAAAATGCTATGCGCATTTATACCTTGCATAAGTCCTCATTCTACCACATGTTAACCCT CTAGCTGATAATGCAAACACTAACTGGGGGGATTTTATTATAAGGGCTCTAGAAAAAACGAGTTATTCAC ATAACTAGGTTGAGGTTTTTCTCCTCCTGCTGAGGAAACAGTACCGAAGTTCTTTTTCTTGTGGCATTTGTA TTATAAAAACTTGGTGTGGGGGGGGGGGGGGCACAAAACTCCAGCCCACTGAACCTCTGCCAATTAAGATGGTG TTGGGTTAGGTTACATCTGGTTACTGTCCTGGGAAAATCATTTTTATAGAGATGGCCTTCCAAGTGGTTT TAAAATTTACTGAAGTTTTTAGGTCAATTATGTATGTTGACTAAATTTACAAATAAACTTGTTTATCCAA CTAAGTGTCCAAAACCTAAATTGAATGTACTAAGTTTTCACATGTCCCATTATCTAGGTCCTTGTATACT AATGTTTTGAACTTAGATCATTTCAGGTGTTGTTTGGTGGATAAAGGAACCTTTTATTATAAAGATACT GTAGAAAGCATGTGAACAGCTCTCTGCTTGATTAAGATGCCATAATAGTGCTGTATTTGCAGTGTGGGCT AAGACAAAGTATATTAATAAGCTTTTCAGCCCCCCCACTCCCGTTCCGTAGTAGAAGCCCACAGGTGT AGAACTCAGTCTTAAACTTCAGTATGAAACCAGTTTCCTTGTGCGATGATGGCCACTAAAGCATAGTACG TGGATGTCAGTGAGACAGCATGAGAGCCAGCAGTCATCAAAGCGTTCCACGTTTGAAGTTAGCAACTGCT TAAAGTTATGCCCTATTAAAATTGCTTTCTCAAAAGTTTGGGTTAGTTTCAAATGTGATATTTTGGAGGG AAGGTAAAGTAGGTATCTTTCAGGTCGTGATAATGAGCTCCTATGAAAGGATGCAATATAATGACCCGCT TTTCTAGAAAGTTCATAATCAGCTCTGGAACAAGCACACTTGATTCCTCACTGTGCTTCAGAATGAGATT AAGATCAGATGTTGGAACGTGCTATGCTGTAGCGTGTCTGGAAACAAAGTACACAAACCTGGCTACGGTG ATGAGTTAGCTTCTGCTTACTACCTGTGACAACCCAAGTGGGTGACACTAGTGAACCTTCTCCAGTCTGC AGGCTGGCATAGAAGGCTCTTAGATTATATTGGGCAGCTTGCAATCTGCCGAAGCAGTGACTTGCATTTC CACACTTGGCTTGAGCACTCAACCCAGAAGGCGAAGATAGCTTTTGGTTGTAGGCGGCTTCCTGTATGGG ATATCCCTCGGTAAGGGTAAAGGAGCAGAGGCAAAAGGAGAAAAGCAGAAGTTGCAGCTGATGCAGGTATC АААААААААААААААААААААА >očiščen CDS

ATGGCCCGAACCAAGCAGACTGCTCGTAAGTCCACCGGTGGGAAAGCCCCCCGCAAACAGCTGGCCACGAAAGCCG CCAGGAAAAGCGCTCCCTCTACCGGCGGGGTGAAGAAGCCTCATCGCTACAGGCCCGGGACCGTGGCGCTTCGAGA GATTCGTCGTTATCAGAAGTCGACCGAGCTGCTCATCCGGAAGCTGCCCTTCCAGAGGTTGGTGAGGGAGATCGC GCAGGATTTCAAAACCGACCTGAGGTTTCAGAGCGCAGCCATCGGTGCGCTGCAGGAGGCTAGCGAAGCGTACCT GGTGGGTCTGTTCGAAGATACCAACCTGTGTGCCATCCACGCTAAGAGAGTCACCATCATGCCCAAAGACATCCA GTTGGCTCGCCGGATACGGGGAGAGAGAGCTTAA

Celotno cDNA zaporedje za človeški histon H3 iz družine 3B preoblikujte tudi v obratno komplementarno zaporedje ter ga shranite v isto datoteko v FASTA formatu.

Odgovor

Tudi orodje za pripravo obratno komplementarnih zaporedij je na voljo med povezavami v spletni učilnici, direktna povezava pa je <u>http://www.cellbiol.com/scripts/complement/dna sequence reverse complement.php</u>. Že prej pripravljen zapis zgolj vstavimo v program in stisnemo »Do the Job!«. Pridobimo obratno komplementarno zaporedje:

TTAAGCTCTCTCTCCCCGTATCCGGCGAGCCAACTGGATGTCTTTGGGCATGATGGTGACTCTCTTAGCGTGGATG GCACACAGGTTGGTATCTTCGAACAGACCCACCAGGTACGCTTCGCTAGCCTCCTGCAGCGCACCGATGGCTGCGC TCTGAAACCTCAGGTCGGTTTTGAAATCCTGCGCGCGATCTCCCTCACCAACCTCTGGAAGGGCAGCTTCCGGATGAG CAGCTCGGTCGACTTCTGATAACGACGAATCTCTCGAAGCGCCACGGTCCCGGGCCTGTAGCGATGAGGCTTCTTC ACCCCGCCGGTAGAGGGAGCGCTTTTCCTGGCGGGCCTTTCGTGGCCAGCTGTTTGCGGGGGGGCCTTTCCCACCGGTGG ACTTACGAGCAGTCTGCTTGGTTCGGGCCAT

S pomočjo orodja »ORF Finder« poiščite najdaljši bralni okvir v celotnem cDNA zaporedju za človeški histon H3 iz družine 3B. Čemu ustreza, koliko nukleotidov je dolgo in koliko aminokislinskih ostankov kodira? Iskanje ponovite na obratno komplementarnem zaporedju celotnega cDNA zaporedja in primerjajte rezultat.

Odgovor

Zapis vstavimo v program (<u>https://www.ncbi.nlm.nih.gov/gorf/gorf.html</u>). Program sam po sebi ne naredi nič drugega kot da v vseh možnih položajih poišče zaporedja od START kodona pa do konca zapisa oz. do prvega STOP kodona.

Rezultat **(slika 10)** nam poda več možnih bralnih okvirjev, ki so na desni strani razvršeni po velikosti. S stiskom na obarvan kvadratek (najprej je moder, nato pa vijoličen) se nam pokaže še prevod bralnega okvirja v aminokislinsko zaporedja in dolžina le tega. Navadno je »pravilen« bralni okvir - tisti, ki se dejansko prepiše, najdaljši bralni okvir.

Vendar **POZOR**, pozorni moramo biti tudi na položaj okvirja (angl. Frame)! V našem primeru je najdaljši bralni okvir dolg 642 nukleotidov, vendar je v njegov položaj -2. Negativna številka pomeni, da gre za odprti bralni okvir v obratni smeri od tiste, ki smo jo vnesli na začetku. Kadar delamo s kodirajočimi regijami so taki rezultati nesmiselni, saj je smer prepisovanja vnaprej določena s položaji promotorjev, mest za vezavo ribosoma itd. Bralni okvir na položaju -2 med drugim niti nima nujno potrebnega STOP kodona na koncu. **Najdaljši bralni okvir, ki dejansko tudi vsebuje zapis za naš protein, je torej na položaju +2, dolg 411 nukleotidov in zapisuje za 136 aminokislinskih ostankov** (označen tudi na sliki 10).

Slika 10 - rezultat programa ORF Finder

Če uporabimo obratno komplementarno zaporedje bomo našli popolnoma enako dolge bralne okvirje (ker bodo isti), le da bo njihova lokacija na zapisu drugačna (ker je drugače številčeno) okvir pa bo imel obratno vrednost (+2 namesto -2, -1 namesto +1 itd.).

4. vaja – Baze in analiza nukleotidnih zaporedij (Miha Pavšič / marec 2014)

V04-10

Uporabite orodje Translate na strežniku Expasy in prevedite kodirajočo regijo cDNA zaporedja za človeški histon H3 iz družine 3B. Oglejte si možnosti, ki jih to orodje omogoča, in kakšni so rezultati.

Odgovor

Program se nahaja na povezavi <u>http://web.expasy.org/translate/</u>. Med možnostmi, ki jih imamo so trije različni načini prikaza rezultatov in izbira genskega koda, ki določa, kako naj se nukleotidno zaporedje prevede v aminokislinskega. Genskega koda, razen če natančno vemo, katerega potrebujemo, ne spreminjamo, saj bo za veliko večino zaporedij, s katerimi boste delali, standardni kod pravilen.

Kot rezultat dobimo prevode v različnih položajih bralnega okvirja. Odprti bralni okvirji, so označeni z rdečo. Najdaljši bralni okvir je na položaju +1 in dejansko obsega celotno zaporedje, njegov prevod pa je enak zaporedju proteina:

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTVALREIRRYQKSTE LLIRKLPFQRLVREIAQDFKTDLRFQSAAIGALQEASEAYLVGLFEDTNLCAIHAKRVTI MPKDIQLARRIRGERA-