$e=-N \cdot e \quad E=\sigma / \varepsilon_{o}$
$F=\frac{e_{1} \cdot e_{2}}{4 \pi \varepsilon_{o} r^{2}}=e \cdot E \quad \varepsilon_{0}=8,8 \cdot 10^{-12}$
Homogeno polje:
$A=F s=e U$
$U=E \cdot h \quad W_{e}=e \cdot V$
Kondenzator:
$C=e / U \quad C=\varepsilon_{o} \cdot S / d$
vzporedno: $C=C_{1}+C_{2}$
zaporedno: $1 / C=1 / C_{1}+1 / C_{2}$
Upor: $U=I R \quad R_{\text {zice }}=\zeta \cdot d / S$
zaporedno: $I=$ const.
$U=U_{1}+U_{2} \quad R=R_{1}+R_{2}$
vzporedno: $U=$ const.
$I=I_{1}+I_{2} \quad 1 / R=1 / R_{1}+\ldots \quad I_{1} / I_{2}=R_{2} / R_{1}$
Moc: $A=U e=U I \cdot \Delta t=I^{2} R=U^{2} / R$
Energija: $Q=P \cdot \Delta t=m c \cdot \Delta T$
Sila na vodnik: $F=I B d=B \times v \cdot e$
Gostota polja v tuljavi: $B=\mu_{o} \cdot I \cdot n / d$
Vodnik: $E_{i}=v B \quad U=d E_{i} \quad U_{i}=B v d$
Indukcija: $\Phi=S B \quad U_{i}=\Delta \Phi / \Delta t$
Lastna indukcija: $U_{i} \cdot t=I \quad L \cdot I=\Delta \Phi$
Izmenicna napetost: $U_{o}=n S B \omega \quad P_{o}=U_{o} \cdot I_{o}$
$A=\bar{P} \cdot t_{o} \quad \bar{P}=1 / 2 \cdot P_{o} \quad U_{e f}=\sqrt{2} U_{o}$
Nihajni krog: $W_{e p}=\frac{C U^{2}}{2}=\frac{e^{2}}{2 C} \quad A=1 / 2 \cdot L \cdot I_{o}^{2}$
$W_{m p}=\frac{L \cdot I_{o}^{2}}{2} \quad I_{o}=\omega \cdot e_{0}=1 / \sqrt{L C} \cdot e_{0}=2 \pi \cdot v \cdot e_{0}$
$v=\frac{1}{2 \pi \sqrt{L C}}$

