# Supercritical Fluid Chromatography

### **Supercritical Fluid Chromatography**

#### Mobile phase: no gas nor liquid, but a supercritical fluid.

V phase diagram of carbon dioxide



# **Supercritical Fluids**

- At temperatures and pressures above its critical temperature and pressure (critical point), a substance is called a supercritical fluid. The critical temperature is the temperature above which a distinct liquid phase cannot exist. The vapor pressure at its critical temperature is its critical pressure.
- Where supercritical fluids exist: The forces from the kinetic energy of the molecules exceeds the forces from condensing influence of the intermolecular forces, so no distinct liquid phase exists

# SFC Mobile Phases

- Mobile phases should have critical parameters that are easily reached using chromatographic pumps and ovens common to currently used instrumentation.
- Advantages of supercritical fluids over carrier gasses and liquid mobile phases are in its solubility properties, physical properties, and detector compatibility.

### **Use of Supercritical Fluids**

Properties (density) between gas and liquid



Speed <u>and</u> resolution better compared to liquid chromatography (faster diffusion inside the column cavity, thus faster equilibration)

#### Supercritical fluids

- ...possess lower surface tension <u>than liquids</u> (i.e. they spread faster over stat. phase).
- ...dissolve non-volatile substances <u>unlike gases</u>
- ...evaporate upon pressure reduction after passing the column: **analytes** are in gaseous phase and thus easily detectable

#### $\succ$ mostly used: CO<sub>2</sub>

- compatible with common detectors (FID, UV).
- low critical temperature.
- non-toxic.



TABLE 29-1 Comparison of Properties of Supercritical Fluids with Liquids and Gases

| Property                                      | Gas (STP)                | Supercritical Fluid    | Liquid                   |
|-----------------------------------------------|--------------------------|------------------------|--------------------------|
| Density, g/cm <sup>3</sup>                    | $(0.6-2) \times 10^{-3}$ | 0.2-0.5                | 0.6-2                    |
| Diffusion coefficient, cm <sup>2</sup> /s     | $(1-4) \times 10^{-1}$   | $10^{-3} - 10^{-4}$    | $(0.2-2) \times 10^{-5}$ |
| Viscosity, g cm <sup>-1</sup> s <sup>-1</sup> | $(1-3) \times 10^{-4}$   | $(1-3) \times 10^{-4}$ | $(0.2-3) \times 10^{-2}$ |

Note: All data are to an order of magnitude only.

© 2007 Thomson Higher Education

| Fluid            | Critical Temperature,<br>°C | Critical Pressure,<br>atm | Critical Point<br>Density, g/mL | Density at 400<br>atm, g/mL |
|------------------|-----------------------------|---------------------------|---------------------------------|-----------------------------|
| CO <sub>2</sub>  | 31.3                        | 72.9                      | 0.47                            | 0.96                        |
| N <sub>2</sub> O | 36.5                        | 71.7                      | 0.45                            | 0.94                        |
| NH <sub>3</sub>  | 132.5                       | 112.5                     | 0.24                            | 0.40                        |
| <i>n</i> -Butane | 152.0                       | 37.5                      | 0.23                            | 0.50                        |

TABLE 29-2 Properties of Some Supercritical Fluids

© 2007 Thomson Higher Education

# SFC Separations

- SFC is a hybrid of gas and liquid chromatography that combines some of the best features of each
- As in HPLC, variation of the mobile phase composition affects separation
- In SFC, mobile phase affinity for the analyte is a function of mobile phase density
- Density is controlled by controlling system pressure
- Highly polar samples are not easy to handle (high critical parameters & high reactivity)

# SFC Advantages vs HPLC

- Supercritical fluids have low viscosities
  - faster analysis (5 to 10 X faster)
  - less pressure drop across the column
  - the use of open tubular columns is feasible
- Column lengths from 10 to 20 m are used
- Can be used with a wide range of sensitive detectors
- Resolving power is ~5X that of HPLC

#### **Flow Rate and Gradient Elution in SFC**



# SFC Advantages vs GC

- Can analyze non-volatile, polar, or adsorptive solutes without derivatization.
- Can analyze thermally labile compounds.
- Can analyze solutes of much higher molecular weight.



# SFC Instrumentation

- Solvent delivery system
- Injector
- Column/Column Oven
- Restrictor
- Detector
- Data System



# Solvent Delivery System

- Maintains precise mobile phase flow (1 to 10 µL/min {OT} or 1 to 10 mL/min {Packed}).
- Aids in the control of the system pressure (up to 60 Mpa).
- Moves mobile phase in the liquid state under pressure through the injector & into the column.

# Injectors

- Typical HPLC design injectors for packed columns.
- Split/Splitless valve injector (0.01 to 0.05 μL injections) for open tubular columns.
- Timed split injector (0.01 to 0.05  $\,\mu L$  injections) for open tubular columns.

### Detectors

- Most any detector used in GC or HPLC can be used.
- FID and UV detectors commonly used.
- Coupled Detectors
  - MS
  - FTIR

# SFC Columns

- Open tubular (derived from GC)
  - Large # theoretical plates (~X500)
  - Easier to control pressure (low P drop)
- Packed (derived from HPLC)
  - Faster analysis
  - Higher flow rates
  - Higher sample capacity

# **Open Tubular Columns**

 Smaller than GC capillary columns, typically 50 μm i.d., 10 to 20 m in length

 MP must be more stable due to extreme conditions of supercritical fluids

## Packed Columns

Similar to HPLC columns (10, 5, or 3 μm porous particles)

• Silica based chemically bonded phases

• Typically 10 cm long X 4.6 mm i.d

### SFC and Retention

- Retention dependent on temperature, pressure, mobile phase density, and composition of the stationary and mobile phase.
- Complex interactions and not easily predictable.
- For supercritical fluids

- solvating properties similar to liquids - viscosity closer to gases

• Solvating power  $\alpha$  density



# Temperature/Pressure Effects

- At lower P, > T, < solubility
- At higher P, > T, > solubility
  - -> T,  $P_v$  of solute > solute solubility
  - -< fluid density < solubilizing power
- > T, < solvent  $\rho$
- >P, > solvent  $\rho$

# Supercritical CO<sub>2</sub> Density

| <ul> <li>P (MPa)</li> </ul> | T (°C) | ρ (g/cm³) |
|-----------------------------|--------|-----------|
| 7.3                         | 40     | 0.22      |
| 7.3                         | 80     | 0.14      |
| 7.3                         | 120    | 0.12      |
| 40                          | 40     | 0.96      |
| 40                          | 80     | 0.82      |
| 40                          | 120    | 0.70      |

# Solvent Programming

- Programming is very useful in controlling solvent strength.
- Variations in P (density), T, and mobile phase composition.
- Density programming is most widely used (not simple relationship, T & P).

-> density, > solubility, < retention

- Combined T & P programming to control  $\rho$  and thereby solubility and diffusion

### SFC Mobile Phases

- Generally non-polar compounds with low to moderate critical properties
  - CO<sub>2</sub>, N<sub>2</sub>O, ethane, pentane
- Normal phase type separations
  - non-polar mp and low polarity sp (substrate+ amino, diol, or cyano groups)
- Elution = function of molecular mass & polarity

# Carbon Dioxide: SFC Solvent

- Low T<sub>c</sub>
  - operating T as low as 40°C
- Moderate  $P_c$  and  $\rho_c$  of 0.448g/cm3
  - reach high  $\rho$  with P < 40 MPa
- Safe to use
  - nontoxic, nonflammable, noncorrosive, inert
- Detector compatible
- Wide  $\rho$  range

### Other SFC Solvents

- Nitrous Oxide Similar in solvating and separations properties to CO<sub>2</sub>
- Alkanes less safe and not as detector compatible than CO<sub>2</sub>
  - better solvent characteristics for nonpolar solutes
- Halocarbons, xenon, etc. specialty applications only
- More polar solvents for highly polar & high molecular weight compounds

# Solvent Modifiers

- Add organic modifiers to > solvent strength
  - methanol
  - isopropanol
  - dichloromethane
  - THF
  - acetonitrile