Financial Mathematics 2 2011/2012

21 June 2012

1. Explain how Black and Scholes obtain the PDE

$$
\left\{\begin{array}{l}
\frac{\partial C}{\partial t}+\frac{\sigma^{2}}{2} x^{2} \frac{\partial^{2} C}{\partial x^{2}}+r x \frac{\partial C}{\partial x}+-r C=0 \text { in }[0, T[\times[0,+\infty) \\
C(T, x)=(x-K)_{+}, \quad x \in[0,+\infty)
\end{array}\right.
$$

2. Consider the trinomial tree of Kamrad-Ritcken.
(a) Compute the probabilitites p_{u}, p_{m}, p_{d} in order to satisfy the local consistency conditions.
(b) Write a Matlab or Scilab code to compute European Put price in the Black Scholes model.
3. Let $Z_{t}=e^{-\lambda B_{t}}$ where $\left(B_{t}\right)_{t \geq 0}$ is a standard Brownian motion. Write the expression of $d Z_{t}$.
4. ParAsian options are barrier options which can be knocked in or out depending on time that the underlying asset has spent cumulatively over a barrier. In the ParAsian knock-out case the barrier option vanishes if the price of the underlying asset remain in a cumulative manner for a period longer than W over the barrier.
Write a Matlab or Scilab code to price ParAsian option down-and-out in the Black Scholes model.
The options parameters are K, S_{0}, T, down, W.
5. Consider the PDE

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(t, x)=\frac{\sigma^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}(t, x)+\left(r-\frac{\sigma^{2}}{2}\right) \frac{\partial u}{\partial x}(t, x)-r u(t, x) \text { in }(0, T] \times \mathbb{R}, \\
u(0, x)=\psi(x), \forall x \in \mathbb{R},
\end{array}\right.
$$

(a) Write the explicit finite difference scheme and the stability condition using the approximation

$$
u^{\prime}(x)=\frac{u(x+h)-u(x-h)}{2 h}+O\left(h^{2}\right)
$$

(b) Write the fully implicit finite difference scheme $(\theta=1)$ in a matrix form.

