Financial Mathematics 2 2011/2012
 10th May 2012

1. Show that, in the Black Scholes model, if f is continuous bounded function

$$
\lim _{N \rightarrow+\infty} \mathbb{E}_{q}\left[f\left(S_{N}\right)\right]=\mathbb{E}_{Q}\left[f\left(S_{T}\right)\right]
$$

where $\left(S_{n}\right)_{n \geq 0}$ is the CRR Markov Chain.
2. Let $\left(X_{i}, i \geq 1\right)$ be a sequence of i.i.d. random variables $\mathbb{P}\left(X_{i}= \pm 1\right)=\lambda / 2$ and $\mathbb{P}\left(X_{i}=0\right)=1-\lambda$, with $0<\lambda \leq 1$. Consider the Markov chain $S_{n}=X_{1}+\cdots+X_{n}$.
(a) Precise the conditions under which $\left(S_{n}\right)_{n \geq 0}$ converges in law to a standard brownian motion.
(b) Write a Matlab or Scilab code to compute Europen Put price in the Black Scholes model.
(c) Write a Matlab or Scilab code to compute American Put price in the Black Scholes model.
3. Let $\left(S_{t}\right)_{t \geq 0}$ be a geometric brownian motion. Write the expression of $d S_{t}^{2}$ using two different approaches.
4. Parisian options are barrier options which can be knocked in or out depending on time that the underlying asset has spent over a barrier. In the Parisian knock-out case the barrier option vanishes if the price of the underlying asset remain for a period longer than W over the barrier.
Write a Matlab or Scilab code to price Parisian option down-and-out in the Black Scholes model.
The options parameters are K, S_{0}, T, down, W.
5. Suppose that the function f is continuous and bounded. Set

$$
u\left(t, x_{1}, x_{2}\right)=\mathbb{E}\left[f\left(x_{1}+B_{t}^{1}, x_{2}+B_{t}^{2}\right)\right]
$$

where B_{t}^{1} and B_{t}^{2} are independent standard Brownian motion.
Then u is the unique smooth solution of the heat equation

$$
\left\{\begin{array}{l}
\left.\left.\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{1}{2} \frac{\partial^{2} u}{\partial x_{2}^{2}} \quad(t, x) \in\right] 0, T\right] \times \mathbb{R}^{2} \\
u\left(0, x_{1}, x_{2}\right)=f(x), x \in \mathbb{R}^{2}
\end{array}\right.
$$

(a) Show how to compute the price of an exchange option with payoff $\left(S_{T}^{1}-S_{T}^{2}\right)_{+}$in the two-dimensional Black-Scholes using the function u.
(b) Write the explicit finite difference scheme (for sake of simplicity consider $\Delta x=$ $\Delta x_{1}=\Delta x_{2}$).
(c) Write the stability condition for the explicit scheme.
6. Consider a standard brownian motion with $B_{0}=0$ and $B_{t_{j+1}}=b$ wtih $t_{j}<t_{j+1}$. Show that

$$
B_{t_{j}} \left\lvert\, B_{t_{j+1}}=b \sim \mathcal{N}\left(\frac{t_{j}}{t_{j+1}} b, \frac{t_{j}}{t_{j+1}}\left(t_{j+1}-t_{j}\right)\right) .\right.
$$

