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Continuous Stochastic Processes

The origin of stochastic processes can be traced back to the field of statistical

physics. A physical process is a physical phenomenon whose evolution is

studied as a function of time.

In a financial framework, the idea is to give a model of stock price

fluctuations in continuous time.

Definition

Let (Ω,F , P) be a probability space. A continuous-time stochastic process is a family (Xt)t≥0 of

R-valued random variables on (Ω,F , P).

• the index t stands for the time.

• for each time t fixed:

Xt : Ω −→ R

• for each ω ∈ Ω the map t −→ Xt(ω) is called the path of the process.
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Brownian motion
In finance, the most common models are constructed on the Brownian
motion.
Definition

A Brownian motion is a real-valued, continuous stochastic process (Xt)t≥0 with indipendent,

normally distribuited and stationary increments. In other words :

P1 B0 = 0.

P1 the function s 7→ Bs(ω) is a continuous function.

P2 indipendent increments : for each k, 0 ≤ t0 < t1 < . . . < tk, the increments

Bt0 , Bt1 − Bt0 , Bt2 − Bt1 , .., Btk
− Btk−1

are indipendent.

P3 for each t > s ≥ 0, Bt − Bs ∼ N(0, t − s) ⇒
EP(Bt − Bs) = 0 and EP

[
(Bt − Bs)

2
]
= t − s.

In particular for s = 0 it follows that EP(Bt) = 0 e V ar(Bt) = t.

A particle that is undergoing a Brownian motion Bt has the following property.

P2 Absence of memory.

P3 The mean of Bt − Bs is 0, so there is not a privilegiate direction.

The variance of the particle movement is proportional to the observed time.
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Brownian motion
The path of the Brownian motion are continuous, but not differentiable.
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Financial example 2

P = e
−rT

EP

[
(K − e

σBT )+
]
.

with BT B.M a time T .

We consider a put option with underlying asset

St = e
σBt

Under P, BT ∼ N(0, T ). So BT = g
√
T con g ∼ N(0, 1).

We can approximate the put price with

P ≈ e
−rT f(X1) + · · · + f(Xn)

n

X1, .., Xn ∼ N(0, T ).
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Monte Carlo algorithm

main()

{

double mean_price,mean2_price,brownian,price,price_sample,error_price,inf_price,sup_price;

mean_price= 0.0;

mean2_price= 0.0;

for(i=1;i<=N;i++)

{

/*Brownian motion simulation*/

brownian=gaussian()*sqrt(T);

price_sample=MAX(0.0,K-exp(sigma*brownian));

mean_price= mean_price+price_sample;

mean2_price= mean2_price+SQR(price_sample);

}

/* Price */

price=exp(-r*T)*(mean_price/N);

error_price= sqrt(exp(-2.*r*T)*mean2_price/N - SQR(price))/sqrt(N-1);

inf_price= price - 1.96*(error_price);

sup_price= price + 1.96*(error_price);

}
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Simulation of Brownian motion path
Let [0, T ] be divided using N time intervals of lenght ∆T = T

N .

BT = BN∆T =
N∑

k=1

(Bk∆T − B(k−1)∆T ) =
N∑

k=1

∆Bk

The increments ∆Bk ∼ N(0,∆T ) are indipendent and normally distribuited :

∆Bk = g
√
∆T

with g ∼ N(0, 1).

Start t0 = 0, B0 = 0, ∆T = T
N

for k = 1, . . . , N

BEGIN;

tk = tk−1 +∆T ;

simulation of g ∼ N(0, 1);

Bk∆T = B(k−1)∆T + g
√
∆T ;

END;
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Algorithm

main()

{

double k,T,brownian,B_T,time;

int N;

k=T/N;

brownian=0.;

time=0.;

for(i=1;i<=N;i++)

{

/*Time*/

time+=k;

/*Brownian path simulation*/

brownian=brownian+gaussian()*sqrt(k);

}

/* B_T */

B_T=brownian;

}
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Brownian motion and random walk
One of the standard way used to approximate a Brownian motion is to use a random walk. Here

we use the standard symmetric random walk.

Proposition

Let (Xi, i ≥ 1) be a sequence of independent random variables such that P(Xi = ±1) = 1/2.

Set Sn = X1 + · · · + Xn.

Let ∆T = T/N be the time step. Set

BN =
√
∆TSN .

Then, the sequence BN converges in distribution to BT .

Consequently, if f is a bounded continuous function then

EP

[
f(BN )

]
converges to EP

[
f(BT )

]
.

In the financial example 2, f(BT ) = (K − eσBT )+. We use f(BN ) = (K − eσBN )+, or

g(SN ) = (K − eσ
√

∆TSN )+
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Besides, E(g(SN)) can be computed as follows :





u(N∆T, x) = g(x),

u(n∆T, x) =
1

2
u((n + 1)∆T, x + 1) +

1

2
u((n + 1)∆T, x − 1).
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Exercise
Compute

P = e−rT
EP

[
(K − eσBT )+

]
.

with K = 100, r = 0.03, σ = 0.2 using

• Monte Carlo algorithm

• Tree method
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Brownian motion with drift

Xt = µt + σBt

with Bt standard brownian motion, with µ and σ costants.
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A french matematician Bachelier introduces it in first years of 1900 for modelling stock prices.

But there is the problem of the negative prices:

Xt ∼ N(µt, σ2t).
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Geometric Brownian motion
Definition

A Geometric Brownian motion St is a continuous stochastic process such that:

P1 S0 = x.

P2 St = S0e
(µ− 1

2
σ2)t+σBt

Bt standard Brownian motion, µ and σ costant.
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The log-returns log
St
S0

have normal distribution (the returns are normal).

St
S0

is log-normal of parameters (µ − 1
2σ

2)t and σ2t.
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Property of the GBM

P1 Consider s<t. Then

log(
St

Ss

) ∼ N((µ − 1

2
σ2)(t − s), σ2(t − s))

Expectation

E(
St

Ss

) = eµ(t−s)

Variance

V ar(
St

Ss
) = e

2µ(t−s)
(e

σ2(t−s) − 1)

P2 for each 0 ≤ t0 < t1 < . . . < tn, the relative increments Stk
/Stk−1

are indipendent and

have common law.
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Financial example 3

P = e−rT
EP

[
(K − ST )+

]
,

with ST value of the GBM at time T T .

We consider a put option with underlying asset

St = S0e
(µ− 1

2
σ2)t+σBt

The payoff can be written

h(BT ) = (K − S0e
(µ− 1

2
σ2)T+σBT )+

Then

P ≈ e
−rT h(X1) + · · · + h(Xn)

n

X1, .., Xn ∼ N(0, T ).
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Monte Carlo algorithm

main()

{

double mean_price,mean2_price,brownian,price,price_sample,error_price,inf_price,sup_price;

mean_price= 0.0;

mean2_price= 0.0;

for(i=1;i<=N;i++)

{

brownian=gaussian()*sqrt(T);

price_sample=MAX(0.0,K-x*exp((mu-0.5*sigma*sigma)*T+sigma*brownian));

mean_price=mean_price+price_sample;

mean2_price=mean2_price+SQR(price_sample);

}

price=exp(-r*T)*(mean_price/N);

error_price= sqrt(exp(-2.*r*T)*mean2_price/N - SQR(price))/sqrt(N-1);

inf_price= price - 1.96*(error_price);

sup_price= price + 1.96*(error_price);

}
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Simulation of Geometric Brownian motion path
Let [0, T ] be divided using N time intervals of lenght ∆T = T

N .

ST = SN∆T = S0

N∏

k=1

Sk∆T

S(k−1)∆T

= S0

N∏

k=1

e(µ− 1
2
σ2)∆T+σ∆Bk ,

with

(µ − 1

2
σ
2
)∆T + σ∆Bk = (µ − 1

2
σ
2
)∆T + σg

√
∆T con g ∼ N(0, 1)

Simulation of the GBM path (St)0≤t≤T :

Start t0 = 0, S0 = x, ∆T = T
N

for k = 1, . . . , N

BEGIN;

tk = tk−1 +∆T ;

simulation of g ∼ N(0, 1);

Sk∆T = S(k−1)∆T e(µ−
1
2
σ2)∆T+σg

√

∆T ;

END.
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Algorithm

main()

{

double k,T,w_derive,s,S_N,mu=0.1,sigma=0.2,time;

int N;

k=T/N;

s=50.;

time=0.;

for(i=1;i<=N;i++)

{

/*Timew*/

time=time+k;

/*Geometric Brownian simulation*/

s=s*exp((mu-0.5*sigma*sigma)*k+sigma*gaussian()*sqrt(k));

}

/* S_T */

S_T=s;

}
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Differential property of the Brownian motion

E

[
(Bt − Bs)

2
]
= t − s

Let us consider the random variable.

X =
(
Bt+∆t − Bt

)2

Then

E

[
X
]
= (t + ∆t) − t = ∆t

and

V
[
X
]
= 2(∆t)

2

When ∆t is close to zero the r.v. X is “not to much random” and is very close to his mean ∆t:

X =
(
Bt+∆t − Bt

)2
≈ ∆t

We write (
dBt

)2
= dBtdBt = dt

and

dBt =
√
dt
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The quadratic variation of the Brownian motion in [0, T ] is equal to his variance.

Let (Bt, t ≥ 0) be a standard Brownian motion. For each T > 0 and partition

0 = tn0 < tn1 < · · · < tnn = T so that π = sup
i≤n

(t
n
i − t

n
i−1) goes to zero when n → ∞ :

n∑

i=1

(
B(t

n
i ) − B(t

n
i−1)

)2
→ T,

in the sense if the quadratic mean, for n → ∞

Proof

E

[ n∑

i=1

(
B(t

n
i ) − B(t

n
i−1)

)2 ]
= T

The random variables
(
B(tni ) − B(tni−1)

)2
, i = 1, 2, . . . , n are indipendent.

Var

[
n∑

i=1

(
B(tni ) − B(tni−1)

)2

]

=
n∑

i=1

Var

[(
B((tni ) − B(tni−1)

)2
]

= 2
n∑

i=1

(
tni − tni−1

)2 ≤ 2πT.

This variance goes to 0 when n → ∞.
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Stochastic integral
Consider the stochastic integral ∫ T

0

f(t, Bt)dBt.

We can define Xt =
∫ T
0

f(t, Bt)dBt as the limit of discrete sums of the type

Xn =

n−1∑

j=0

f(t
n
j , Btn

j
)(Btn

j+1
− Btn

j
),

as n goes to infinity.

When can think Xn as a "Riemann sum" in which the representative point inside each

subinterval is the left-most point.

This definition of the stochastic integral is called the Ito integral.

Of course, conditions on f are necessary to ensure that Xn converge in a reasonable sense and

that the limit does not depende on the sequence on meshes tni .
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Example ∫ T

0

dBs = BT

Example ∫ T

0

BsdBs = − 1

2
T +

1

2
B2

T
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∫ T

0

Bs dBs = lim
n→∞

n−1∑

i=0

Btj
·
(
Btj+1

− Btj

)

= lim
n→∞

n−1∑

i=0

(
Btj

Btj+1
− B2

tj

)

= lim
n→∞

n−1∑

i=0

(
−1

2

(
Btj+1

− Btj

)2
− 1

2
B2

tj
+

1

2
B2

tj+1

)

= lim
n→∞

1

2

[

−
n−1∑

i=0

(
Btj+1

− Btj

)2
+

n−1∑

i=0

(
B

2
tj+1

− B
2
tj

)]

= −1

2
T +

1

2
B

2
T .
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Ito integral property
∫ T

0

f(t, Bt)dBt.

- Linearity

- Expectation

E

[ ∫ T

0

f(t, Bt)dBt

]
= 0.

- Quadratic mean

E

[( ∫ T

0

f(t, Bt)dBt

)2]
= E

[ ∫ T

0

f
2
(t, Bt)dt

]
.
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Stochastic differential equations
Definition A process (Xt)t≥0 which satisfies

(1) Xt = x +

∫ t

0

µ(s,Xs)ds +

∫ t

0

σ(s,Xs)dBs,

is called a solution of the stochastic differential equation with coefficient µ and σ, intial

condition x and Brownian motion (Bt)t≥0.

(Xt)t≥0 is called the diffusion process corresponding to the coefficients µ and σ. We can write

the differential simbolic notation

{
dXt = µ(t,Xt)dt+ σ(t, Xt)dBt

X0 = x.

Example

The standard Brownian motion, the Brownian motion with drift and the geometric Brownian

motion are solution of particular s.d.e.

26



Example : Brownian motion with drift
The Brownian motion with drift is solution of the following s.d.e.

{
dXt = µdt+ σdBt

X0 = x.

It is the diffusion process corresponding to the coefficients µ(t,Xt) = µ and σ(t,Xt) = 1.

Stochastic Integral

Xt = x +

∫ t

0

µds+

∫ t

0

σdBs

The solution is

Xt = x + µt + σBt
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Example : Geometric Brownian motion
The Geometric Brownian motion with drift is solution of the following s.d.e.

{
dSt = µStdt + σStdBt

S0 = x.

Stochastic Integral

(2) St = S0 +

∫ t

0

µSudu +

∫ t

0

σSudBu

The solution is

St = xe
(µ− 1

2
σ2)t+σBt

The results is obtained using the Ito’s Lemma.
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Ito’s Lemma
Lemma

Let (Xt)t≥0 the solution of

dXt = µ(t,Xt)dt + σ(t,Xt)dBt

X0 = x0

and let f(t,Xt) be a real-valued function of class C1,2.

Then

df(t,Xt) = (
∂f(t,Xt)

∂t + µ(t,Xt)
∂f(t,Xt)

∂Xt
+ 1

2σ
2(t,Xt)

∂2f(t,Xt)

∂X2
t

)dt + σ(t,Xt)
∂f(t,Xt)

∂Xt
dBt

We can write

df(t,Xt) = α(t,Xt)dt +
∂f

∂Xt

dXt

with

α(t,Xt) =
∂f

∂t
+

σ2(t,Xt)

2

∂2f

∂X2
t
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Example

dSt = µStdt + σStdBt

S0 = x

Using Ito’s lemma

St = S0e
(µ− 1

2
σ2)t+σBt

Let us consider Xt = Bt and

St = f(t, Bt) = S0e
(µ− 1

2
σ2)t+σBt

Ito’s lemma implies that

dSt = df(t,Bt) =
(
(µ − 1

2
σ2)St +

1

2
σ2St

)
dt + σStdBt = µStdt + σStdBt
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On the contrary, let is consider Xt = St and

f(t, St) = ln(St)

Ito’s lemma implies that

dln(St) = df(t, St) = (µ − 1

2
σ2)dt + σdBt

or in the integral form

∫ T

0

1 dln(St) =

∫ T

0

(µ − 1

2
σ2) dt +

∫ T

0

σ dBt

[ln(St)]
T
0 = (µ − 1

2
σ2) [t]T0 + σ [Bt]

T
0

ln(
ST

S0

) = (µ − 1

2
σ
2
)T + σ(BT − B0)

ST

S0

= exp

[
(µ − 1

2
σ2)T + σBT

]

Then

ST = S0 exp

[
(µ − 1

2
σ
2
)T + σBT .

]
(3)
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Example
Consider f(t, x) = x2 and Xt = Bt. Then

f(t, Bt) = B
2
t

Ito’s lemma implies that

dB2
t = df(t,Bt) =

( 1

2
2
)
dt + 2BtdBt = dt + 2BtdBt

In the integral form

B
2
t = B

2
0 +

∫ t

0

1

2
2du +

∫ t

0

2BudBu

so that ∫ t

0

BudBu =
1

2
(B

2
t − t).
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Theorem (Existence and Uniqueness)

(4) Xt = x +

∫ t

0

µ(s,Xs)ds +

∫ t

0

σ(s,Xs)dBs,

If µ and σ are continuous functions, and if there exists a constant K < +∞, such that :

1. |µ(t, x) − µ(t, y)| + |σ(t, x) − σ(t, y)| ≤ K|x − y|

2. |µ(t, x)| + |σ(t, x)| ≤ K(1 + |x|)

then, for any T ≥ 0, (4) admist a unique solution in the interval [0, T ].

Moreover, this solution (Xs)0≤s≤T satisfies :

E

(

sup
0≤s≤T

|Xs|2
)

< +∞
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Simulation diffusions paths
Euler Discretization Scheme

∆Xt = Xt+∆T − Xt = µ(t,Xt)∆t + σ(t,Xt)∆Bt

X0 = x0

Start t0 = 0, x0, ∆T = T
N

for k = 1, . . . , N

BEGIN;

tk = tk−1 +∆T ;

simulation of g ∼ N(0, 1);

xk∆T = x(k−1)∆T + µ(x(k−1)∆T , tk−1)∆T + σ(x(k−1)∆T , tk−1)g
√
∆T

END;
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Brownian motion

Definition

A Brownian motion is a real-valued, continuous stochastic process (Xt)t≥0 with indipendent,

normally distribuited and stationary increments. In other words :

• B0 = 0.

• continuity.

• indipendent increments : if s ≤ t, Bt − Bs is indipendent of Fs = σ(Bu, u ≤ s).

• stationary increments : if s ≤ t, Bt − Bs and Bt−s have the same law.
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Continuous-time martingale

Let us consider a probability space (Ω,A, P) and a filtration F := (Ft, t ≥ 0) on this space.

Definition An adapted family (Mt, t ≥ 0) of integrable random variables is a (Ft)-martingale if

for each s ≤ t,

E (Mt|Fs) = Ms.

It follows from the definition that if (Mt)t≥0 is a martingale, then E(Mt) = E(M0), for each t.

Example

Bt is an Ft-martingale.
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Markov property

The intuitive meaning of the Markov property is that the future behaviour of the process

(Xt)t≥0 after t depends only on the value Xt and is not influenced by the history of the process

before t.

Mathematically speaking, (Xt)t≥0 satisfies the Markov property if, for any function f bounded

and measurable and for any s and t, such that s ≤ t, we have :

E (f (Xt) |Fs) = E (f (Xt) |Xs) .

This property is satisfied for a solution of the equation (4).

This is a crucial property of the Markovian model and it will have great conseguences in the

pricing of options.
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Black-Scholes model

- Risk-free asset {
dS0

t = rS0
t dt

S0
0 = 1.

- Risk asset {
dSt = µStdt + σStdBt

S0 = x.

with (Bt)t≥0 standard brownian motion under the historical probability P.

- The short-term interest rate is known and is costant through time.

- The stock pays no dividends or other distributions.

- There are no penalties to short-selling.

- It is possible to borrow any fraction of the price of a security to buy it or to hold it, at the

short-time interest rate.

- Absence of arbitrage opportunities.

38



Financial interpretation of the parameters

- r istantaneous interest rate : [0%, 12%]

- µ expected return of the risky asset.

E(
St

S0

) = e
µt

- σ is the volatility σ.

This is vey important parameters : [30%, 70%] in the equity market.

- risk premium λ

λ =
µ − r

σ

Then

µ = r + λσ

The expected return µ of the risky asset is the sum of the return of the no-risky asset plus

something proportional to σ.
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We can write

dSt = rStdt + σSt(dBt + λdt)

The Girsanov theorem gives

dB̂t = dBt + λdt

with B̂t standard Brownian motion under the risk neutral probability Q.
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Dinamics under the risk neutral probability measure

(5)

{
dSt = rStdt + σStdB̂t

S0 = x.

with B̂t standard Brownian motion under Q.

The solution(5) is

St = xe
(r− 1

2
σ2)t+σB̂t

Then

EQ

(
ST

St
|Ft

)
= e

r(T−t)
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Radon-Nikodyn Theorem
Let P and Q be two probabilty measure on (Ω,F)

If Q is absolutely continuous with respect to P, (A ∈ F , P(A) = 0 → Q(A) = 0), then there

existe a unique r.v. X ≥ 0, F-misurable such that

Q(A) =

∫

A

XdP

The random variable X is commonly written as

dQ

dP
= X

X is called the Radon-Nikodyn derivative.
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Change of probability measure in the Gaussian case
Let use consider Z ∼ N(µ, 1) under P.

Then there exists Q so that Z(0, 1) under Q where

dQ = e−µZ+ 1
2
µ2

dP.

In fact

P(Z ≤ z) =

∫

{ω:Z(ω)≤z}
dP(ω) =

∫ z

−∞

1√
2π

e
−(x−µ)2

2 dx,

and

Q(Z ≤ z) =

∫

{ω:Z(ω)≤z}
dQ(ω) =

∫

{ω:Z(ω)≤z}
e
−µZ(ω)+ 1

2
µ2

dP(ω) =

∫ z

−∞

1
√
2π

e
−x2

2 dx.

Moreover it holds

EP

[
f(Z)

]
= EQ

[
f(Z)e

µZ− 1
2
µ2]

and EQ

[
f(Z)

]
= EP

[
f(Z)e

−µZ+1
2
µ2]

.
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Girsanov’s Theorem
Let Bt be a Brownian motion under (Ω,F , P) adapted to the filtration Ft.

Let (Zt)0≤t≤T be the process defined by :

Zt = exp
(
− λBt − 1

2
λ2t
)
.

Then, under the probability measure Q with density ZT with respect to P

dQ = ZT dP

the process (B̂t)0≤t≤T given by B̂t = Bt + λt, is a standard Brownian motion under Q.
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Risk neutral pricing formula

EQ

(
ST

St
|Ft

)
= e

r(T−t)

This holds for each asset:

EQ

[VT

Vt

|Ft

]
= e

r(T−t)

Equivalently

Vt = EQ

(
e
−r(T−t)

VT |Ft

)
.

The price of a contingent claim is the expected value of the discounted payoff.

e−rtVt = EQ

(
e−rTVT |Ft

)
.

Discounted prices are martingales.
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Black-Scholes formula for European Call options
The price at time t of an European Call option in the Black-Scholes model

Ct = EQ

(
e−r(T−t)CT |Ft

)
= EQ

(
e−r(T−t)(Ste

(r− 1
2
σ2)(T−t)+σ(BT −Bt) − K)+

)

is given by

Ct = StN(d1) − Ke
−r(T−t)

N(d2)

with

d1 =
log
(

St
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

d2 = d1 − σ
√

T − t

and N(x) the distribution function of the standard Gaussian variable

N(d) =
1√
2π

∫ d

−∞
e−x2/2dx.
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Black-Scholes formula for European Put options
The price at time t of an European put option in the Black-Scholes model

Pt = EQ

(
e−r(T−t)PT |Ft

)
= EQ

(
e−r(T−t)(K − Ste

(r− 1
2
σ2)(T−t)+σ(BT −Bt))+

)

is given by

Pt = Ke
−r(T−T )

N(−d2) − StN(−d1)
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Implementation of the formula
The price of the call option depends on six parameters.

C = C(St = x, t, T,K, σ, r)

- The strike K and the maturity T are specified in the contract.

- r is constant. But in general this is not true (Vasicek or CIR model).

- The volatility cannot be observed directly. In practice, two methods are used to evaluate σ

– The historical method: in the BS model, σ2T is the variance of log(ST ) and the

variables log(S∆T /S0), log(S2/S∆T ), . . . , log(SN∆T /S(N−1)∆T ) are i.i.d random

variables.

Therefore, σ can be estimated by statistical means using past observations of the asset

price.

– the ”implied volatility” method: some options are quoted on organized markets; the

price of options being an increasing function of σ, we can associate an ”implied”

volatility to each quoted option, by inversion of the Black-Scholes formula.

C
Obs

(S0, 0, T,K) = C(S0, 0, T,K,Σ(K,T ), r)

Σ is called implied volatility. Due to the market imperfections Σ has a typical

dependence on K called SMILE EFFECT.
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Approximating the distribution function of g ∼ N(0, 1)

Set t = 1
1+px , then:

N(x) =





1 − 1√

2π
exp(− x2

2 )(b1t + b2t
2 + b3t

3 + b4t
4 + b5t

5) if x ≥ 0

1√
2π

exp(− x2

2 )(b1t + b2t
2 + b3t

3 + b4t
4 + b5t

5) if x < 0

with the following constants :

p = 0.2316419;

b1 = 0.319381530;

b2 = −0.356563782;

b3 = 1.781477937;

b4 = −1.821255978;

b5 = 1.330274429;
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Approximating the distribution function of g ∼ N(0, 1)

double N(double x)

{ const double p= 0.2316419;

const double b1= 0.319381530;

const double b2= -0.356563782;

const double b3= 1.781477937;

const double b4= -1.821255978;

const double b5= 1.330274429;

const double one_over_twopi= 0.39894228;

double t;

if(x >= 0.0)

{

t = 1.0 / ( 1.0 + p * x );

return (1.0 - one_over_twopi * exp( -x * x / 2.0 )

* t * ( t *( t * ( t * ( t * b5 + b4 ) + b3 ) + b2 ) + b1 ));

}

else

{/* x < 0 */

t = 1.0 / ( 1.0 - p * x );

return ( one_over_twopi * exp( -x * x / 2.0 ) *

t * ( t *( t * ( t * ( t * b5 + b4 ) + b3 ) + b2 ) + b1 ));

}

}
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Scilab

function [y]=Norm(x)

[y,Q]=cdfnor("PQ",x,0,1);

endfunction
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Price of a Call option

main()

{

double sigmasqrt,d1,d2,delta,price;

sigmasqrt=sigma*sqrt(t);

d1=(log(s/k)+r*t)/sigmasqrt+sigmasqrt/2.;

d2=d1-sigmasqrt;

delta=N(d1);

/*Price*/

price=s*delta-exp(-r*t)*k*N(d2);

}
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Price of a put option

main()

{

double sigmasqrt,d1,d2,delta,price;

sigmasqrt=sigma*sqrt(t);

d1=(log(s/k)+r*t)/sigmasqrt+sigmasqrt/2.;

d2=d1-sigmasqrt;

delta=N(-d1);

/*Price*/

price=exp(-r*t)*k*N(-d2)-delta*s;

}
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Put-Call Theorem Parity
We have the following put-call parity between the prices of the underlying asset St and

European call and put options on stocks that pay no dividends:

Ct = Pt + St − Ke
−r(T−t)

.
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Proof of the Black-Scholes formula

C(t, x) = EQ

[
e−r(T−t)(xe(r−

1
2
σ2)(T−t)+σ(BT −Bt) − K)+

]

Then

C(t, x) = EQ

[(
xe

− 1
2
σ2(T−t)+σ

√
T−tg − Ke

−r(T−t)

)

+

]

with g ∼ N(0, 1).

Set

d1 =
log
(

x
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

d2 = d1 − σ
√

T − t

C(t, x) = E

[(
xe

σ
√

(T−t)g− 1
2
σ2(T−t) − Ke

−r(T−t)

)
1g≥−d2

]

=

∫ +∞

−d2

(
xeσ

√
(T−t)y− 1

2
σ2(T−t) − Ke−r(T−t)

)
e−y2/2

√
2π

dy

=

∫ d2

−∞

(
xe

−σ
√

(T−t)y− 1
2
σ2(T−t) − Ke

−r(T−t)

)
e−y2/2

√
2π

dy.
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C(t, x) =

∫ d2

−∞

(
xe

−σ
√

(T−t)y−σ2(T−t)/2 − Ke
−r(T−t)

)
e−y2/2

√
2π

dy.

The change of variable z = y + σ
√

(T − t), gives :

C(t, x) = xN(d1) − Ke−r(T−t)N(d2),

with :

N(d) =
1√
2π

∫ d

−∞
e−x2/2dx.
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Monte Carlo method in the Black-Scholes model
We want compute

P = e−rT
EQ

[
(K − ST )+

]
.

in the Black-Scholes model

ST = S0e
(r− 1

2
σ2)T+σBT

The payoff function can be written in the following way

h(BT ) = (K − S0e
(r− 1

2
σ2)T+σBT )+

We can approximate the price with

P ≈ e
−rT h(X1) + · · · + h(Xn)

n

X1, .., Xn ∼ N(0, T ).
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Monte Carlo algorithm
European Put in the Black-Scholes model

main()

{

double mean_price,mean2_price,brownian,price,price_sample,error_price,inf_price,sup_price;

mean_price= 0.0;

mean2_price= 0.0;

for(i=1;i<=N;i++)

{

brownian=gaussian()*sqrt(T);

price_sample=MAX(0.0,K-x*exp((r-0.5*sigma*sigma)*T+sigma*brownian));

mean_price= mean_price+price_sample;

mean2_price= mean2_price+SQR(price_sample);

}

/* Price */

price=exp(-r*T)*(mean_price/N);

error_price= sqrt(exp(-2.*r*T)*mean2_price/N - SQR(price))/sqrt(N-1);

inf_price= price - 1.96*(error_price);

sup_price= price + 1.96*(error_price);

}

60


