The Black Scholes model

Antonino Zanette
University of Udine

antonino.zanette@uniud.it

Continuous Stochastic Processes

The origin of stochastic processes can be traced back to the field of statistical physics. A physical process is a physical phenomenon whose evolution is studied as a function of time.

In a financial framework, the idea is to give a model of stock price fluctuations in continuous time.

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A continuous-time stochastic process is a family $\left(X_{t}\right)_{t \geq 0}$ of \mathbb{R}-valued random variables on $(\Omega, \mathcal{F}, \mathbb{P})$.

- the index t stands for the time.
- for each time t fixed:

$$
X_{t}: \Omega \longrightarrow \mathbb{R}
$$

- for each $\omega \in \Omega$ the map $t \longrightarrow X_{t}(\omega)$ is called the path of the process.

Brownian motion

In finance, the most common models are constructed on the Brownian motion.

Definition

A Brownian motion is a real-valued, continuous stochastic process $\left(X_{t}\right)_{t \geq 0}$ with indipendent, normally distribuited and stationary increments. In other words :

P1 $B_{0}=0$.
P1 the function $s \mapsto B_{s}(\omega)$ is a continuous function.
P2 indipendent increments : for each $k, 0 \leq t_{0}<t_{1}<\ldots<t_{k}$, the increments $B_{t_{0}}, B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, . ., B_{t_{k}}-B_{t_{k-1}}$ are indipendent.

P3 for each $t>s \geq 0, B_{t}-B_{s} \sim N(0, t-s) \Rightarrow$
$\mathbb{E}_{\mathbb{P}}\left(B_{t}-B_{s}\right)=0$ and $\mathbb{E}_{\mathbb{P}}\left[\left(B_{t}-B_{s}\right)^{2}\right]=t-s$.
In particular for $s=0$ it follows that $\mathbb{E}_{\mathbb{P}}\left(B_{t}\right)=0$ e $\operatorname{Var}\left(B_{t}\right)=t$.
A particle that is undergoing a Brownian motion B_{t} has the following property.
P2 Absence of memory.
P3 The mean of $B_{t}-B_{s}$ is 0 , so there is not a privilegiate direction. The variance of the particle movement is proportional to the observed time.

Brownian motion

The path of the Brownian motion are continuous, but not differentiable.

Financial example 2

$$
P=e^{-r T} \mathbb{E}_{\mathbb{P}}\left[\left(K-e^{\sigma B_{T}}\right)_{+}\right]
$$

with B_{T} B.M a time T.
We consider a put option with underlying asset

$$
S_{t}=e^{\sigma B_{t}}
$$

Under $\mathbb{P}, B_{T} \sim N(0, T)$. So $B_{T}=g \sqrt{T}$ con $g \sim N(0,1)$. We can approximate the put price with

$$
P \approx e^{-r T} \frac{f\left(X_{1}\right)+\cdots+f\left(X_{n}\right)}{n}
$$

$X_{1}, . ., X_{n} \sim N(0, T)$.

Monte Carlo algorithm

```
main()
{
    double mean_price,mean2_price,brownian,price,price_sample,error_price,inf_price,sup_price;
    mean_price= 0.0;
    mean2_price= 0.0;
    for(i=1;i<=N;i++)
        {
            /*Brownian motion simulation*/
            brownian=gaussian()*sqrt(T);
            price_sample=MAX(0.0,K-exp(sigma*brownian));
            mean_price= mean_price+price_sample;
            mean2_price= mean2_price+SQR(price_sample);
        }
    /* Price */
    price=exp(-r*T)*(mean_price/N);
    error_price= sqrt(exp(-2.*r*T)*mean2_price/N - SQR(price))/sqrt(N-1);
    inf_price= price - 1.96*(error_price);
    sup_price= price + 1.96*(error_price);
}
```


Simulation of Brownian motion path

Let $[0, T]$ be divided using N time intervals of lenght $\Delta T=\frac{T}{N}$.

$$
B_{T}=B_{N \Delta T}=\sum_{k=1}^{N}\left(B_{k \Delta T}-B_{(k-1) \Delta T}\right)=\sum_{k=1}^{N} \Delta B_{k}
$$

The increments $\Delta B_{k} \sim N(0, \Delta T)$ are indipendent and normally distribuited :

$$
\Delta B_{k}=g \sqrt{\Delta T}
$$

with $\quad g \sim N(0,1)$.

$$
\begin{aligned}
\text { Start } & t_{0}=0, B_{0}=0, \Delta T=\frac{T}{N} \\
\text { for } & k=1, \ldots, N \\
& \text { BEGIN; } \\
& t_{k}=t_{k-1}+\Delta T \\
& \text { simulation of } g \sim N(0,1) \\
& B_{k \Delta T}=B_{(k-1) \Delta T}+g \sqrt{\Delta T} ; \\
& \mathrm{END}
\end{aligned}
$$

Algorithm

```
main()
{
    double k,T,brownian,B_T,time;
    int N;
    k=T/N;
    brownian=0.;
    time=0.;
    for(i=1;i<=N;i++)
        {
            /*Time*/
            time+=k;
            /*Brownian path simulation*/
            brownian=brownian+gaussian()*sqrt(k);
        }
    /* B_T */
    B_T=brownian;
}
```


Brownian motion and random walk

One of the standard way used to approximate a Brownian motion is to use a random walk. Here we use the standard symmetric random walk.

Proposition

Let $\left(X_{i}, i \geq 1\right)$ be a sequence of independent random variables such that $\mathbb{P}\left(X_{i}= \pm 1\right)=1 / 2$.
Set $S_{n}=X_{1}+\cdots+X_{n}$.
Let $\Delta T=T / N$ be the time step. Set

$$
B_{N}=\sqrt{\Delta T} S_{N}
$$

Then, the sequence B_{N} converges in distribution to B_{T}. Consequently, if f is a bounded continuous function then

$$
\mathbb{E}_{\mathbb{P}}\left[f\left(B_{N}\right)\right] \text { converges to } \mathbb{E}_{\mathbb{P}}\left[f\left(B_{T}\right)\right] .
$$

In the financial example 2, $f\left(B_{T}\right)=\left(K-e^{\sigma B_{T}}\right)_{+}$. We use $f\left(B_{N}\right)=\left(K-e^{\sigma B_{N}}\right)_{+}$, or $g\left(S_{N}\right)=\left(K-e^{\sigma \sqrt{\Delta T} S_{N}}\right)_{+}$

Besides, $E(g(S N))$ can be computed as follows :

$$
\left\{\begin{array}{l}
u(N \Delta T, x)=g(x) \\
u(n \Delta T, x)=\frac{1}{2} u((n+1) \Delta T, x+1)+\frac{1}{2} u((n+1) \Delta T, x-1)
\end{array}\right.
$$

Exercise

Compute

$$
P=e^{-r T} \mathbb{E}_{\mathbb{P}}\left[\left(K-e^{\sigma B_{T}}\right)_{+}\right]
$$

with $K=100, r=0.03, \sigma=0.2$ using

- Monte Carlo algorithm
- Tree method

Brownian motion with drift

$$
X_{t}=\mu t+\sigma B_{t}
$$

with B_{t} standard brownian motion, with μ and σ costants.

A french matematician Bachelier introduces it in first years of 1900 for modelling stock prices. But there is the problem of the negative prices:

$$
X_{t} \sim N\left(\mu t, \sigma^{2} t\right)
$$

Geometric Brownian motion

Definition

A Geometric Brownian motion S_{t} is a continuous stochastic process such that:
P1 $S_{0}=x$.
P2 $S_{t}=S_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}}$
B_{t} standard Brownian motion, μ and σ costant.

The log-returns $\log \frac{S_{t}}{S_{0}}$ have normal distribution (the returns are normal).
$\frac{S_{t}}{S_{0}}$ is log-normal of parameters $\left(\mu-\frac{1}{2} \sigma^{2}\right) t$ and $\sigma^{2} t$.

Property of the GBM

P1 Consider $\mathrm{s}<\mathrm{t}$. Then

$$
\log \left(\frac{S_{t}}{S_{s}}\right) \sim N\left(\left(\mu-\frac{1}{2} \sigma^{2}\right)(t-s), \sigma^{2}(t-s)\right)
$$

Expectation

$$
\mathbb{E}\left(\frac{S_{t}}{S_{s}}\right)=e^{\mu(t-s)}
$$

Variance

$$
\operatorname{Var}\left(\frac{S_{t}}{S_{s}}\right)=e^{2 \mu(t-s)}\left(e^{\sigma^{2}(t-s)}-1\right)
$$

P2 for each $0 \leq t_{0}<t_{1}<\ldots<t_{n}$, the relative increments $S_{t_{k}} / S_{t_{k-1}}$ are indipendent and have common law.

Financial example 3

$$
P=e^{-r T} \mathbb{E}_{\mathbb{P}}\left[\left(K-S_{T}\right)_{+}\right]
$$

with S_{T} value of the GBM at time T T.
We consider a put option with underlying asset

$$
S_{t}=S_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}}
$$

The payoff can be written

$$
h\left(B_{T}\right)=\left(K-S_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma B_{T}}\right)_{+}
$$

Then

$$
P \approx e^{-r T} \frac{h\left(X_{1}\right)+\cdots+h\left(X_{n}\right)}{n}
$$

$X_{1}, . ., X_{n} \sim N(0, T)$.

Monte Carlo algorithm

```
main()
{
    double mean_price,mean2_price,brownian,price,price_sample,error_price,inf_price,sup_price;
    mean_price= 0.0;
    mean2_price= 0.0;
    for(i=1;i<=N;i++)
        {
            brownian=gaussian()*sqrt(T);
            price_sample=MAX(0.0,K-x*exp((mu-0.5*sigma*sigma)*T+sigma*brownian));
            mean_price=mean_price+price_sample;
            mean2_price=mean2_price+SQR(price_sample);
        }
    price=exp(-r*T)*(mean_price/N);
    error_price= sqrt(exp(-2.*r*T)*mean2_price/N - SQR(price))/sqrt(N-1);
    inf_price= price - 1.96*(error_price);
    sup_price= price + 1.96*(error_price);
}
```


Simulation of Geometric Brownian motion path

Let $[0, T]$ be divided using N time intervals of lenght $\Delta T=\frac{T}{N}$.

$$
S_{T}=S_{N \Delta T}=S_{0} \prod_{k=1}^{N} \frac{S_{k \Delta T}}{S_{(k-1) \Delta T}}=S_{0} \prod_{k=1}^{N} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta T+\sigma \Delta B_{k}}
$$

with

$$
\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta T+\sigma \Delta B_{k}=\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta T+\sigma g \sqrt{\Delta T} \quad \text { con } \quad g \sim N(0,1)
$$

Simulation of the GBM path $\left(S_{t}\right)_{0 \leq t \leq T}$:

$$
\begin{aligned}
\text { Start } & t_{0}=0, S_{0}=x, \Delta T=\frac{T}{N} \\
\text { for } & k=1, \ldots, N \\
& \text { BEGIN } \\
& t_{k}=t_{k-1}+\Delta T \\
& \text { simulation of } g \sim N(0,1) \\
& S_{k \Delta T}=S_{(k-1) \Delta T} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta T+\sigma g \sqrt{\Delta T}} \\
& \text { END. }
\end{aligned}
$$

Algorithm

```
main()
{
    double k,T,w_derive,s,S_N,mu=0.1,sigma=0.2,time;
    int N;
    k=T/N;
    s=50.;
    time=0.;
    for(i=1;i<=N;i++)
        {
            /*Timew*/
            time=time+k;
            /*Geometric Brownian simulation*/
            s=s*exp((mu-0.5*sigma*sigma)*k+sigma*gaussian()*sqrt(k));
        }
    /* S_T */
        S_T=s;
}
```


Differential property of the Brownian motion

$$
\mathbb{E}\left[\left(B_{t}-B_{s}\right)^{2}\right]=t-s
$$

Let us consider the random variable.

$$
X=\left(B_{t+\Delta t}-B_{t}\right)^{2}
$$

Then

$$
\mathbb{E}[X]=(t+\Delta t)-t=\Delta t
$$

and

$$
V[X]=2(\Delta t)^{2}
$$

When Δt is close to zero the r.v. X is "not to much random" and is very close to his mean Δt :

$$
X=\left(B_{t+\Delta t}-B_{t}\right)^{2} \approx \Delta t
$$

We write

$$
\left(d B_{t}\right)^{2}=d B_{t} d B_{t}=d t
$$

and

$$
d B_{t}=\sqrt{d t}
$$

The quadratic variation of the Brownian motion in $[0, T]$ is equal to his variance.

Let $\left(B_{t}, t \geq 0\right)$ be a standard Brownian motion. For each $T>0$ and partition $0=t_{0}^{n}<t_{1}^{n}<\cdots<t_{n}^{n}=T$ so that $\pi=\sup _{i \leq n}\left(t_{i}^{n}-t_{i-1}^{n}\right)$ goes to zero when $n \rightarrow \infty$:

$$
\sum_{i=1}^{n}\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)^{2} \rightarrow T
$$

in the sense if the quadratic mean, for $n \rightarrow \infty$

Proof

$$
\mathbb{E}\left[\sum_{i=1}^{n}\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)^{2}\right]=T
$$

The random variables $\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)^{2}, i=1,2, \ldots, n$ are indipendent.

$$
\begin{aligned}
\operatorname{Var}\left[\sum_{i=1}^{n}\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)^{2}\right] & =\sum_{i=1}^{n} \operatorname{Var}\left[\left(B\left(\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)^{2}\right]\right. \\
& =2 \sum_{i=1}^{n}\left(t_{i}^{n}-t_{i-1}^{n}\right)^{2} \leq 2 \pi T
\end{aligned}
$$

This variance goes to 0 when $n \rightarrow \infty$.

Stochastic integral

Consider the stochastic integral

$$
\int_{0}^{T} f\left(t, B_{t}\right) d B_{t}
$$

We can define $X_{t}=\int_{0}^{T} f\left(t, B_{t}\right) d B_{t}$ as the limit of discrete sums of the type

$$
X_{n}=\sum_{j=0}^{n-1} f\left(t_{j}^{n}, B_{t_{j}^{n}}\right)\left(B_{t_{j+1}^{n}}-B_{t_{j}^{n}}\right),
$$

as n goes to infinity.

When can think X_{n} as a "Riemann sum" in which the representative point inside each subinterval is the left-most point.

This definition of the stochastic integral is called the Ito integral.

Of course, conditions on f are necessary to ensure that X_{n} converge in a reasonable sense and that the limit does not depende on the sequence on meshes t_{i}^{n}.

Example

$$
\int_{0}^{T} d B_{s}=B_{T}
$$

Example

$$
\int_{0}^{T} B_{s} d B_{s}=-\frac{1}{2} T+\frac{1}{2} B_{T}^{2}
$$

$$
\begin{aligned}
\int_{0}^{T} B_{s} d B_{s} & =\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} B_{t_{j}} \cdot\left(B_{t_{j+1}}-B_{t_{j}}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1}\left(B_{t_{j}} B_{t_{j+1}}-B_{t_{j}}^{2}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1}\left(-\frac{1}{2}\left(B_{t_{j+1}}-B_{t_{j}}\right)^{2}-\frac{1}{2} B_{t_{j}}^{2}+\frac{1}{2} B_{t_{j+1}}^{2}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{2}\left[-\sum_{i=0}^{n-1}\left(B_{t_{j+1}}-B_{t_{j}}\right)^{2}+\sum_{i=0}^{n-1}\left(B_{t_{j+1}}^{2}-B_{t_{j}}^{2}\right)\right] \\
& =-\frac{1}{2} T+\frac{1}{2} B_{T}^{2}
\end{aligned}
$$

Ito integral property

$$
\int_{0}^{T} f\left(t, B_{t}\right) d B_{t}
$$

- Linearity
- Expectation

$$
\mathbb{E}\left[\int_{0}^{T} f\left(t, B_{t}\right) d B_{t}\right]=0
$$

- Quadratic mean

$$
\mathbb{E}\left[\left(\int_{0}^{T} f\left(t, B_{t}\right) d B_{t}\right)^{2}\right]=\mathbb{E}\left[\int_{0}^{T} f^{2}\left(t, B_{t}\right) d t\right]
$$

Stochastic differential equations

Definition A process $\left(X_{t}\right)_{t \geq 0}$ which satisfies

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} \mu\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s} \tag{1}
\end{equation*}
$$

is called a solution of the stochastic differential equation with coefficient μ and σ, intial condition x and Brownian motion $\left(B_{t}\right)_{t \geq 0}$.
$\left(X_{t}\right)_{t \geq 0}$ is called the diffusion process corresponding to the coefficients μ and σ. We can write the differential simbolic notation

$$
\left\{\begin{array}{l}
d X_{t}=\mu\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t} \\
X_{0}=x
\end{array}\right.
$$

Example

The standard Brownian motion, the Brownian motion with drift and the geometric Brownian motion are solution of particular s.d.e.

Example: Brownian motion with drift

The Brownian motion with drift is solution of the following s.d.e.

$$
\left\{\begin{array}{l}
d X_{t}=\mu d t+\sigma d B_{t} \\
X_{0}=x
\end{array}\right.
$$

It is the diffusion process corresponding to the coefficients $\mu\left(t, X_{t}\right)=\mu$ and $\sigma\left(t, X_{t}\right)=1$.

Stochastic Integral

$$
X_{t}=x+\int_{0}^{t} \mu d s+\int_{0}^{t} \sigma d B_{s}
$$

The solution is

$$
X_{t}=x+\mu t+\sigma B_{t}
$$

Example : Geometric Brownian motion

The Geometric Brownian motion with drift is solution of the following s.d.e.

$$
\left\{\begin{array}{l}
d S_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t} \\
S_{0}=x
\end{array}\right.
$$

Stochastic Integral

$$
\begin{equation*}
S_{t}=S_{0}+\int_{0}^{t} \mu S_{u} d u+\int_{0}^{t} \sigma S_{u} d B_{u} \tag{2}
\end{equation*}
$$

The solution is

$$
S_{t}=x e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}}
$$

The results is obtained using the Ito's Lemma.

Ito's Lemma

Lemma
Let $\left(X_{t}\right)_{t \geq 0}$ the solution of

$$
\begin{aligned}
& d X_{t}=\mu\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t} \\
& X_{0}=x_{0}
\end{aligned}
$$

and let $f\left(t, X_{t}\right)$ be a real-valued function of class $C^{1,2}$.
Then

$$
d f\left(t, X_{t}\right)=\left(\frac{\partial f\left(t, X_{t}\right)}{\partial t}+\mu\left(t, X_{t}\right) \frac{\partial f\left(t, X_{t}\right)}{\partial X_{t}}+\frac{1}{2} \sigma^{2}\left(t, X_{t}\right) \frac{\partial^{2} f\left(t, X_{t}\right)}{\partial X_{t}^{2}}\right) d t+\sigma\left(t, X_{t}\right) \frac{\partial f\left(t, X_{t}\right)}{\partial X_{t}} d B_{t}
$$

We can write

$$
d f\left(t, X_{t}\right)=\alpha\left(t, X_{t}\right) d t+\frac{\partial f}{\partial X_{t}} d X_{t}
$$

with

$$
\alpha\left(t, X_{t}\right)=\frac{\partial f}{\partial t}+\frac{\sigma^{2}\left(t, X_{t}\right)}{2} \frac{\partial^{2} f}{\partial X_{t}^{2}}
$$

Example

$$
\begin{aligned}
& d S_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t} \\
& S_{0}=x
\end{aligned}
$$

Using Ito's lemma

$$
S_{t}=S_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}}
$$

Let us consider $X_{t}=B_{t}$ and

$$
S_{t}=f\left(t, B_{t}\right)=S_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}}
$$

Ito's lemma implies that

$$
d S_{t}=d f\left(t, B_{t}\right)=\left(\left(\mu-\frac{1}{2} \sigma^{2}\right) S_{t}+\frac{1}{2} \sigma^{2} S_{t}\right) d t+\sigma S_{t} d B_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t}
$$

On the contrary, let is consider $X_{t}=S_{t}$ and

$$
f\left(t, S_{t}\right)=\ln \left(S_{t}\right)
$$

Ito's lemma implies that

$$
d \ln \left(S_{t}\right)=d f\left(t, S_{t}\right) \quad=\quad\left(\mu-\frac{1}{2} \sigma^{2}\right) d t+\sigma d B_{t}
$$

or in the integral form

$$
\begin{aligned}
\int_{0}^{T} 1 \ln \left(S_{t}\right) & =\int_{0}^{T}\left(\mu-\frac{1}{2} \sigma^{2}\right) d t+\int_{0}^{T} \sigma d B_{t} \\
{\left[\ln \left(S_{t}\right)\right]_{0}^{T} } & =\left(\mu-\frac{1}{2} \sigma^{2}\right)[t]_{0}^{T}+\sigma\left[B_{t}\right]_{0}^{T} \\
\ln \left(\frac{S_{T}}{S_{0}}\right) & =\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma\left(B_{T}-B_{0}\right) \\
\frac{S_{T}}{S_{0}} & =\exp \left[\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma B_{T}\right]
\end{aligned}
$$

Then

$$
\begin{equation*}
S_{T}=S_{0} \exp \left[\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma B_{T} .\right] \tag{3}
\end{equation*}
$$

Example

Consider $f(t, x)=x^{2}$ and $X_{t}=B_{t}$. Then

$$
f\left(t, B_{t}\right)=B_{t}^{2}
$$

Ito's lemma implies that

$$
d B_{t}^{2}=d f\left(t, B_{t}\right)=\left(\frac{1}{2} 2\right) d t+2 B_{t} d B_{t}=d t+2 B_{t} d B_{t}
$$

In the integral form

$$
B_{t}^{2}=B_{0}^{2}+\int_{0}^{t} \frac{1}{2} 2 d u+\int_{0}^{t} 2 B_{u} d B_{u}
$$

so that

$$
\int_{0}^{t} B_{u} d B_{u}=\frac{1}{2}\left(B_{t}^{2}-t\right)
$$

Theorem (Existence and Uniqueness)

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} \mu\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s} \tag{4}
\end{equation*}
$$

If μ and σ are continuous functions, and if there exists a constant $K<+\infty$, such that :

1. $|\mu(t, x)-\mu(t, y)|+|\sigma(t, x)-\sigma(t, y)| \leq K|x-y|$
2. $|\mu(t, x)|+|\sigma(t, x)| \leq K(1+|x|)$
then, for any $T \geq 0$, (4) admist a unique solution in the interval $[0, T]$.
Moreover, this solution $\left(X_{s}\right)_{0 \leq s \leq T}$ satisfies :

$$
\mathbb{E}\left(\sup _{0 \leq s \leq T}\left|X_{s}\right|^{2}\right)<+\infty
$$

Simulation diffusions paths
Euler Discretization Scheme

$$
\begin{aligned}
& \Delta X_{t}=X_{t+\Delta T}-X_{t}=\mu\left(t, X_{t}\right) \Delta t+\sigma\left(t, X_{t}\right) \Delta B_{t} \\
& X_{0}=x_{0}
\end{aligned}
$$

Start $t_{0}=0, x_{0}, \Delta T=\frac{T}{N}$
for $k=1, \ldots, N$
BEGIN;
$t_{k}=t_{k-1}+\Delta T ;$
simulation of $g \sim N(0,1)$;
$x_{k \Delta T}=x_{(k-1) \Delta T}+\mu\left(x_{(k-1) \Delta T}, t_{k-1}\right) \Delta T+\sigma\left(x_{(k-1) \Delta T}, t_{k-1}\right) g \sqrt{\Delta T}$ END;

Brownian motion

Definition

A Brownian motion is a real-valued, continuous stochastic process $\left(X_{t}\right)_{t \geq 0}$ with indipendent, normally distribuited and stationary increments. In other words :

- $B_{0}=0$.
- continuity.
- indipendent increments : if $s \leq t, B_{t}-B_{s}$ is indipendent of $\mathcal{F}_{s}=\sigma\left(B_{u}, u \leq s\right)$.
- stationary increments : if $s \leq t, B_{t}-B_{s}$ and B_{t-s} have the same law.

Continuous-time martingale

Let us consider a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and a filtration $\mathcal{F}:=\left(\mathcal{F}_{t}, t \geq 0\right)$ on this space.

Definition An adapted family $\left(M_{t}, t \geq 0\right)$ of integrable random variables is a $\left(\mathcal{F}_{t}\right)$-martingale if for each $s \leq t$,

$$
\mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right)=M_{s}
$$

It follows from the definition that if $\left(M_{t}\right)_{t \geq 0}$ is a martingale, then $\mathbb{E}\left(M_{t}\right)=\mathbb{E}\left(M_{0}\right)$, for each t.

Example

B_{t} is an \mathcal{F}_{t}-martingale.

Markov property

The intuitive meaning of the Markov property is that the future behaviour of the process $\left(X_{t}\right)_{t \geq 0}$ after t depends only on the value X_{t} and is not influenced by the history of the process before t.

Mathematically speaking, $\left(X_{t}\right)_{t \geq 0}$ satisfies the Markov property if, for any function f bounded and measurable and for any s and t, such that $s \leq t$, we have :

$$
\mathbb{E}\left(f\left(X_{t}\right) \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(f\left(X_{t}\right) \mid X_{s}\right)
$$

This property is satisfied for a solution of the equation (4).

This is a crucial property of the Markovian model and it will have great conseguences in the pricing of options.

Black-Scholes model

- Risk-free asset

$$
\left\{\begin{array}{l}
d S_{t}^{0}=r S_{t}^{0} d t \\
S_{0}^{0}=1
\end{array}\right.
$$

- Risk asset

$$
\left\{\begin{array}{l}
d S_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t} \\
S_{0}=x
\end{array}\right.
$$

with $\left(B_{t}\right)_{t \geq 0}$ standard brownian motion under the historical probability \mathbb{P}.

- The short-term interest rate is known and is costant through time.
- The stock pays no dividends or other distributions.
- There are no penalties to short-selling.
- It is possible to borrow any fraction of the price of a security to buy it or to hold it, at the short-time interest rate.
- Absence of arbitrage opportunities.

Financial interpretation of the parameters

- r istantaneous interest rate : [0\%,12\%]
- μ expected return of the risky asset.

$$
\mathbb{E}\left(\frac{S_{t}}{S_{0}}\right)=e^{\mu t}
$$

- σ is the volatility σ.

This is vey important parameters : [30\%, 70\%] in the equity market.

- risk premium λ

$$
\lambda=\frac{\mu-r}{\sigma}
$$

Then

$$
\mu=r+\lambda \sigma
$$

The expected return μ of the risky asset is the sum of the return of the no-risky asset plus something proportional to σ.

We can write

$$
d S_{t}=r S_{t} d t+\sigma S_{t}\left(d B_{t}+\lambda d t\right)
$$

The Girsanov theorem gives

$$
d \widehat{B}_{t}=d B_{t}+\lambda d t
$$

with \widehat{B}_{t} standard Brownian motion under the risk neutral probability Q.

Dinamics under the risk neutral probability measure

$$
\left\{\begin{array}{l}
d S_{t}=r S_{t} d t+\sigma S_{t} d \widehat{B}_{t} \tag{5}\\
S_{0}=x
\end{array}\right.
$$

with \widehat{B}_{t} standard Brownian motion under Q.
The solution(5) is

$$
S_{t}=x e^{\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma \widehat{B}_{t}}
$$

Then

$$
\mathbb{E}_{Q}\left(\left.\frac{S_{T}}{S_{t}} \right\rvert\, \mathcal{F}_{t}\right)=e^{r(T-t)}
$$

Radon-Nikodyn Theorem

Let \mathbb{P} and Q be two probabilty measure on (Ω, \mathcal{F})
If Q is absolutely continuous with respect to $\mathbb{P},(A \in \mathcal{F}, \mathbb{P}(A)=0 \rightarrow Q(A)=0)$, then there existe a unique r.v. $X \geq 0, \mathcal{F}$-misurable such that

$$
Q(A)=\int_{A} X d \mathbb{P}
$$

The random variable X is commonly written as

$$
\frac{d Q}{d \mathbb{P}}=X
$$

X is called the Radon-Nikodyn derivative.

Change of probability measure in the Gaussian case
Let use consider $Z \sim N(\mu, 1)$ under \mathbb{P}.
Then there exists Q so that $Z(0,1)$ under Q where

$$
d Q=e^{-\mu Z+\frac{1}{2} \mu^{2}} d \mathbb{P}
$$

In fact

$$
\mathbb{P}(Z \leq z)=\int_{\{\omega: Z(\omega) \leq z\}} d \mathbb{P}(\omega)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2}} d x
$$

and

$$
Q(Z \leq z)=\int_{\{\omega: Z(\omega) \leq z\}} d Q(\omega)=\int_{\{\omega: Z(\omega) \leq z\}} e^{-\mu Z(\omega)+\frac{1}{2} \mu^{2}} d \mathbb{P}(\omega)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}} d x .
$$

Moreover it holds

$$
\mathbb{E}_{\mathbb{P}}[f(Z)]=\mathbb{E}_{Q}\left[f(Z) e^{\mu Z-\frac{1}{2} \mu^{2}}\right] \quad \text { and } \quad \mathbb{E}_{Q}[f(Z)]=\mathbb{E}_{P}\left[f(Z) e^{-\mu Z+\frac{1}{2} \mu^{2}}\right] .
$$

Girsanov's Theorem

Let B_{t} be a Brownian motion under $(\Omega, \mathcal{F}, \mathbb{P})$ adapted to the filtration \mathcal{F}_{t}. Let $\left(Z_{t}\right)_{0 \leq t \leq T}$ be the process defined by :

$$
Z_{t}=\exp \left(-\lambda B_{t}-\frac{1}{2} \lambda^{2} t\right)
$$

Then, under the probability measure Q with density Z_{T} with respect to \mathbb{P}

$$
d Q=Z_{T} d \mathbb{P}
$$

the process $\left(\widehat{B}_{t}\right)_{0 \leq t \leq T}$ given by $\widehat{B}_{t}=B_{t}+\lambda t$, is a standard Brownian motion under Q.

Risk neutral pricing formula

$$
\mathbb{E}_{Q}\left(\left.\frac{S_{T}}{S_{t}} \right\rvert\, \mathcal{F}_{t}\right)=e^{r(T-t)}
$$

This holds for each asset:

$$
\mathbb{E}_{Q}\left[\left.\frac{V_{T}}{V_{t}} \right\rvert\, \mathcal{F}_{t}\right]=e^{r(T-t)}
$$

Equivalently

$$
V_{t}=\mathbb{E}_{Q}\left(e^{-r(T-t)} V_{T} \mid \mathcal{F}_{t}\right)
$$

The price of a contingent claim is the expected value of the discounted payoff.

$$
e^{-r t} V_{t}=\mathbb{E}_{Q}\left(e^{-r T} V_{T} \mid \mathcal{F}_{t}\right)
$$

Discounted prices are martingales.

Black-Scholes formula for European Call options

The price at time t of an European Call option in the Black-Scholes model

$$
C_{t}=\mathbb{E}_{Q}\left(e^{-r(T-t)} C_{T} \mid \mathcal{F}_{t}\right)=\mathbb{E}_{Q}\left(e^{-r(T-t)}\left(S_{t} e^{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(B_{T}-B_{t}\right)}-K\right)_{+}\right)
$$

is given by

$$
C_{t}=S_{t} N\left(d_{1}\right)-K e^{-r(T-t)} N\left(d_{2}\right)
$$

with

$$
d_{1}=\frac{\log \left(\frac{S_{t}}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \quad d_{2}=d_{1}-\sigma \sqrt{T-t}
$$

and $N(x)$ the distribution function of the standard Gaussian variable

$$
N(d)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{d} e^{-x^{2} / 2} d x
$$

Black-Scholes formula for European Put options

The price at time t of an European put option in the Black-Scholes model

$$
P_{t}=\mathbb{E}_{Q}\left(e^{-r(T-t)} P_{T} \mid \mathcal{F}_{t}\right)=\mathbb{E}_{Q}\left(e^{-r(T-t)}\left(K-S_{t} e^{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(B_{T}-B_{t}\right)}\right)_{+}\right)
$$

is given by

$$
P_{t}=K e^{-r(T-T)} N\left(-d_{2}\right)-S_{t} N\left(-d_{1}\right)
$$

Implementation of the formula

The price of the call option depends on six parameters.

$$
C=C\left(S_{t}=x, t, T, K, \sigma, r\right)
$$

- The strike K and the maturity T are specified in the contract.
- r is constant. But in general this is not true (Vasicek or CIR model).
- The volatility cannot be observed directly. In practice, two methods are used to evaluate σ
- The historical method: in the BS model, $\sigma^{2} T$ is the variance of $\log \left(S_{T}\right)$ and the variables $\log \left(S_{\Delta T} / S_{0}\right), \log \left(S_{2} / S_{\Delta T}\right), \ldots, \log \left(S_{N \Delta T} / S_{(N-1) \Delta T}\right)$ are i.i.d random variables.
Therefore, σ can be estimated by statistical means using past observations of the asset price.
- the "implied volatility" method: some options are quoted on organized markets; the price of options being an increasing function of σ, we can associate an 'implied" volatility to each quoted option, by inversion of the Black-Scholes formula.

$$
C^{O b s}\left(S_{0}, 0, T, K\right)=C\left(S_{0}, 0, T, K, \Sigma(K, T), r\right)
$$

Σ is called implied volatility. Due to the market imperfections Σ has a typical dependence on K called SMILE EFFECT.
$n=m=6,30$ iter.

e

Approximating the distribution function of $g \sim N(0,1)$

Set $t=\frac{1}{1+p x}$, then:

$$
N(x)= \begin{cases}1-\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)\left(b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}\right) & \text { if } \quad x \geq 0 \\ \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)\left(b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}\right) & \text { if } \quad x<0\end{cases}
$$

with the following constants :

$$
\begin{aligned}
& p=0.2316419 \\
& b_{1}=0.319381530 \\
& b_{2}=-0.356563782 \\
& b_{3}=1.781477937 \\
& b_{4}=-1.821255978 \\
& b_{5}=1.330274429
\end{aligned}
$$

Approximating the distribution function of $g \sim N(0,1)$

```
double N(double x)
{ const double p= 0.2316419;
    const double b1= 0.319381530;
    const double b2= -0.356563782;
    const double b3= 1.781477937;
    const double b4= -1.821255978;
    const double b5= 1.330274429;
    const double one_over_twopi= 0.39894228;
    double t;
    if(x >= 0.0)
        {
        t = 1.0 / ( 1.0 + p * x );
        return (1.0 - one_over_twopi * exp( -x * x / 2.0 )
* t * ( t * ( t * ( t * ( t * b5 + b4 ) + b3 ) + b2 ) + b1 ));
    }
    else
        {/* x < 0 */
            t = 1.0 / (1.0 - p * x );
            return ( one_over_twopi * exp( -x * x / 2.0 ) *
                t * ( t * ( t * ( t * ( t * b5 + b4 ) + b3 ) + b2 ) + b1 ));
    }
}
```

Scilab

```
function [y]=Norm(x)
    [y,Q]=cdfnor("PQ",x,0,1);
endfunction
```


Price of a Call option

```
main()
{
    double sigmasqrt,d1,d2,delta,price;
    sigmasqrt=sigma*sqrt(t);
    d1=(log(s/k)+r*t)/sigmasqrt+sigmasqrt/2.;
    d2=d1-sigmasqrt;
    delta=N(d1);
    /*Price*/
    price=s*delta-exp(-r*t)*k*N(d2);
}
```

Price of a put option

```
main()
{
    double sigmasqrt,d1,d2,delta,price;
    sigmasqrt=sigma*sqrt(t);
    d1=(log(s/k)+r*t)/sigmasqrt+sigmasqrt/2.;
    d2=d1-sigmasqrt;
    delta=N(-d1);
    /*Price*/
    price=exp(-r*t)*k*N(-d2)-delta*s;
}
```


Put-Call Theorem Parity

We have the following put-call parity between the prices of the underlying asset S_{t} and European call and put options on stocks that pay no dividends:

$$
C_{t}=P_{t}+S_{t}-K e^{-r(T-t)} .
$$

Payoff Call

Payof Put

Proof of the Black-Scholes formula

$$
C(t, x)=E_{Q}\left[e^{-r(T-t)}\left(x e^{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(B_{T}-B_{t}\right)}-K\right)_{+}\right]
$$

Then

$$
C(t, x)=E_{Q}\left[\left(x e^{-\frac{1}{2} \sigma^{2}(T-t)+\sigma \sqrt{T-t} g}-K e^{-r(T-t)}\right)_{+}\right]
$$

with $g \sim N(0,1)$.
Set

$$
\begin{aligned}
d_{1} & =\frac{\log \left(\frac{x}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \quad d_{2}=d_{1}-\sigma \sqrt{T-t} \\
C(t, x) & =\mathbb{E}\left[\left(x e^{\sigma \sqrt{(T-t)} g-\frac{1}{2} \sigma^{2}(T-t)}-K e^{-r(T-t)}\right) \mathbf{1}_{g \geq-d_{2}}\right] \\
& =\int_{-d_{2}}^{+\infty}\left(x e^{\sigma \sqrt{(T-t)} y-\frac{1}{2} \sigma^{2}(T-t)}-K e^{-r(T-t)}\right) \frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} d y \\
& =\int_{-\infty}^{d_{2}}\left(x e^{-\sigma \sqrt{(T-t)} y-\frac{1}{2} \sigma^{2}(T-t)}-K e^{-r(T-t)}\right) \frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} d y .
\end{aligned}
$$

$$
C(t, x)=\int_{-\infty}^{d_{2}}\left(x e^{-\sigma \sqrt{(T-t)} y-\sigma^{2}(T-t) / 2}-K e^{-r(T-t)}\right) \frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} d y
$$

The change of variable $z=y+\sigma \sqrt{(T-t)}$, gives :

$$
C(t, x)=x N\left(d_{1}\right)-K e^{-r(T-t)} N\left(d_{2}\right)
$$

with :

$$
N(d)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{d} e^{-x^{2} / 2} d x
$$

Monte Carlo method in the Black-Scholes model
We want compute

$$
P=e^{-r T} \mathbb{E}_{Q}\left[\left(K-S_{T}\right)_{+}\right] .
$$

in the Black-Scholes model

$$
S_{T}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma B_{T}}
$$

The payoff function can be written in the following way

$$
h\left(B_{T}\right)=\left(K-S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma B_{T}}\right)_{+}
$$

We can approximate the price with

$$
P \approx e^{-r T} \frac{h\left(X_{1}\right)+\cdots+h\left(X_{n}\right)}{n}
$$

$X_{1}, . ., X_{n} \sim N(0, T)$.

Monte Carlo algorithm

European Put in the Black-Scholes model

```
main()
{
    double mean_price,mean2_price,brownian,price,price_sample,error_price,inf_price,sup_price;
    mean_price= 0.0;
    mean2_price= 0.0;
    for(i=1;i<=N;i++)
        {
            brownian=gaussian()*sqrt(T);
            price_sample=MAX(0.0,K-x*exp((r-0.5*sigma*sigma)*T+sigma*brownian));
            mean_price= mean_price+price_sample;
            mean2_price= mean2_price+SQR(price_sample);
        }
    /* Price */
    price=exp(-r*T)*(mean_price/N);
    error_price= sqrt(exp(-2.*r*T)*mean2_price/N - SQR(price))/sqrt(N-1);
    inf_price= price - 1.96*(error_price);
    sup_price= price + 1.96*(error_price);
}
```

