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Continuous Stochastic Processes

The origin of stochastic processes can be traced back to the field of statistical
physics. A physical process is a physical phenomenon whose evolution is

studied as a function of time.

In a financial framework, the idea is to give a model of stock price

fluctuations in continuous time.

Let (€2, 7,P) be a probability space. A continuous-time stochastic process is a family (X¢)¢>¢ of
R-valued random variables on (2, F, P).

e the index t stands for the time.

e for each time t fixed:
Xy Q—R

e for each w € 2 the map t — X, (w) is called the path of the process.



Brownian motion
In finance, the most common models are constructed on the Brownian
motion.

A Brownian motion is a real-valued, continuous stochastic process (X;);>0 with indipendent,
normally distribuited and stationary increments. In other words :

By = 0.
the function s — Bs(w) is a continuous function.

indipendent increments : for each k£,0 < tg < t; < ... < tg, the increments
BtO 5 Btl — BtO’ Bt2 — Btl y oy Btk — Btk—l are indipendent.

foreacht > s >0, By — Bs ~ N(0,t — s) =
Ep(By; — B,) = 0 and Ep[(Bt - 35)2] —t— s
In particular for s = 0 it follows that Ep(B:) =0 e Var(B;) = t.

A particle that is undergoing a Brownian motion B; has the following property.
Absence of memory.

The mean of By — By is 0, so there is not a privilegiate direction.
The variance of the particle movement is proportional to the observed time.



Brownian motion
The path of the Brownian motion are continuous, but not differentiable.




Financial example 2

P=c TR [(K _ BTy, ]

with B B.M a time T'.
We consider a put option with underlying asset

B
St:ea t

Under P, By ~ N(0,T). So By = g\/T con g ~ N(0,1).
We can approximate the put price with

_or F(X1) + 4+ f(XR)

P =e

n

X1,..,Xn ~ N(0,T).



Monte Carlo algorithm

main ()

{
double mean_price,mean2_price,brownian,price,price_sample,error_price,inf_price,sup_price;
mean_price= 0.0;
mean2_price= 0.0;
for(i=1;i<=N;i++)
{
/*Brownian motion simulation*/
brownian=gaussian() *sqrt (T);

price_sample=MAX(0.0,K-exp(sigma*brownian)) ;

mean_price= mean_pricet+price_sample;
mean2_price= mean2_price+SQR(price_sample);
}
/* Price */
price=exp(-r*T)*(mean_price/N);
error_price= sqrt(exp(-2.*r*T)*mean2_price/N - SQR(price))/sqrt(N-1);
inf_price= price - 1.96*(error_price);

sup_price= price + 1.96x(error_price);



Simulation of Brownian motion path

Let [0, T] be divided using N time intervals of lenght AT = L.

N N
Br = Bnar = » _(Brar — Bh—1)ar) = > ABy,
k=1 k=1

The increments ABg ~ N(0, AT) are indipendent and normally distribuited :
ABk =gV AT

with g~ N(0,1).

Start tg =0, Bg =0, AT = L

for k=1,...,N
BEGIN;
tk = tk—1 + AT}
simulation of g ~ N(0,1);

2|

Biar = Bk—1)aT + ;
END:




Algorithm

main()

{
double k,T,brownian,B_T,time;
int N;

k=T/N;
brownian=0. ;
time=0. ;
for(i=1;i<=N;i++)
{
/*Timex/

time+=k;

/*Brownian path simulationx*/

brownian=brownian+gaussian() *sqrt (k) ;

/* B_T */
B_T=brownian;

}



Brownian motion and random walk
One of the standard way used to approximate a Brownian motion is to use a random walk. Here
we use the standard symmetric random walk.

Proposition

Let (X;,i > 1) be a sequence of independent random variables such that P(X; = 1) = 1/2.
SGtSn :X1—|——|—Xn

Let AT =T/N be the time step. Set

By = VATSy.

Then, the sequence By converges in distribution to Br.
Consequently, if f is a bounded continuous function then

By [ £(BN)] By | f(Br)].

In the financial example 2, f(Br) = (K — e“PT) . We use f(Bny) = (K — e BN)_ or

g(Sn) = (K —e7VAToN)



Besides, E(g(SN)) can be computed as follows :

u(NAT, z) = g(x),
u(nAT,z) = %u((n + 1)AT,z+ 1) + %u((n + 1)AT, z — 1).
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Exercise
Compute

P=c"TEp [(K _ 78Ty, ]
with K = 100, » = 0.03, 0 = 0.2 using
e Monte Carlo algorithm

® Tree method

11



Brownian motion with drift

Xy = pt + o By

with B; standard brownian motion, with u and o costants.

503
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A french matematician introduces it in first years of 1900 for modelling stock prices.

But there is the problem of the negative prices:

X, ~ N(ut,o’t).
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Geometric Brownian motion

A Geometric Brownian motion S; is a continuous stochastic process such that:

P1 SO = XT.

P2 S; = Soe(u—%02)t+03t

B; standard Brownian motion, u and o costant.

S

The log-returns log g—é have normal distribution (the returns are normal).

St is log-normal of parameters (p — %02)75 and o?t.

S0
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Property of the GBM

Consider s<t. Then
S 1
log(5-) ~ N((u = 50%)(t = 5),0%(t = 5))

Expectation
E(&) _ u(t—s)
Ss
Variance
St 2u(t—s), o2(t—s)
Var(—) = e ( 1)
S
for each 0 < tg < t; < ... < tp, the relative increments Stk/Stk—l are indipendent and

have common law.
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Financial example 3

P=c"TEp [(K — S7)4 ]

with St value of the GBM at time T T'.
We consider a put option with underlying asset

S, = Soe(u—%02)t+0Bt
The payoff can be written
1_2
h(Br) = (K — Seel#~27)THoBT)
Then

Lo B(X1) F -+ h(X)

n

P=e

X1,..,Xn ~ N(0,T).
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Monte Carlo algorithm

main ()
{
double mean_price,mean2_price,brownian,price,price_sample,error_price,inf_price,sup_price;
mean_price= 0.0;
mean2_price= 0.0;
for(i=1;i<=N;i++)

{
brownian=gaussian() *sqrt (T);
price_sample=MAX(0.0,K-x*exp((mu-0.5*sigma*sigma) *T+sigma*brownian)) ;
mean_price=mean_price+price_sample;

mean2_price=mean2_price+SQR(price_sample) ;

}

price=exp(-r*T)*(mean_price/N) ;
error_price= sqrt(exp(-2.*r*T)*mean2_price/N - SQR(price))/sqrt(N-1);
inf_price= price - 1.96x(error_price);

sup_price= price + 1.96x(error_price);
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Simulation of Geometric Brownian motion path

Let [0, T] be divided using N time intervals of lenght AT = L.
N Skar ol (bh—L1o2)AT+0AB
Sr=Snar=So [[ ——— =So [] "2 b
i1 S(k—1)AT Pt}

with
1 1
(p — 50'2)AT +o0cABr = (u — 50'2)AT +ogVAT con g~ N(0,1)

Simulation of the GBM path (S¢)o<i<T

Start tg =0, So =z, AT = L

N
for k=1,...,N

BEGIN;

ty = tp—1 + AT;

simulation of g ~ N(0,1);

. VAV A VAT
Skar = Sg—1yarelt 27 )T Hog ;

END.
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Algorithm

main()

{
double k,T,w_derive,s,S_N,mu=0.1,sigma=0.2,time;
int N;

k=T/N;
s=50.;
time=0. ;
for(i=1;i<=N;i++)
{
/*Timew*/
time=time+k;
/*Geometric Brownian simulation*/
s=s*exp((mu-0.5*sigma*sigma)*k+sigma*gaussian()*sqrt(k));
}
/* S_T */
S_T=s;
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Differential property of the Brownian motion

E[(Bt _ BS)Q] —t— s

Let us consider the random variable.

2
X = (Biya: — Bi)

Then
E[X] — (t+ At) —t = At

and

V[X] — 2(At)?
When At is close to zero the r.v. X is “not to much random” and is very close to his mean At:
2
X = (BHM - Bt) ~ At

We write )
(dBt) — dB,dB, = dt

and
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The quadratic variation of the Brownian motion in [0, 7] is equal to his variance.

Let (B¢,t > 0) be a standard Brownian motion. For each T > 0 and partition
0=ty <t} <--- <t =T so that m = sup(t, —t, ;) goes to zero when n — oo :

i<n

n

S (Be7) - B()) =T,

=1

in the sense if the quadratic mean, for n — oo

Proof
~ 2
E Y (BeM -BE)) | =T
=1
2
The random variables (B(t:‘) — B(t?_l)) ,1=1,2,...,n are indipendent.

Var [

1

(B(t?)—B(t?_1>)2] = Sover[ (B - BE) ]

n
= 2> (tF —t7,)* < 2nT.
=1

This variance goes to 0 when n — oo.
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Stochastic integral
Consider the stochastic integral

T
/ f(t, By)dBz.
0

We can define X; = fOT f(t, By)dB; as the limit of discrete sums of the type

n—1

X, = t". Bin)(Byn — Bin),

Zf(J tj)( 9y tj)

7=0
as n goes to infinity.

When can think X, as a "Riemann sum" in which the representative point inside each
subinterval is the left-most point.

This definition of the stochastic integral is called the Ito integral.

Of course, conditions on f are necessary to ensure that X,, converge in a reasonable sense and

that the limit does not depende on the sequence on meshes t;".
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T
/ dBs = Br
0

T 1 1,
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0

T

B; dB;
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Ito integral property

T
/ f(t, By)dBz.
0

Linearity

Expectation
T
IE[/ f(t,Bt)dBt] — 0.
0

Quadratic mean

/ £(, Bt)dBt _E/ £2(t, Bt)dt]

25



Stochastic differential equations
A process (X¢):>0 which satisfies

t t
(1) X = :c—i—/ ,u(s,Xs)ds—l—/ o(s, Xs)dBs,
0 0

is called a solution of the stochastic differential equation with coefficient u and o, intial

condition z and Brownian motion (B¢)¢>0-

(X¢)¢>0 is called the diffusion process corresponding to the coefficients 1 and 0. We can write

the differential simbolic notation

dXt = ,LL(t, Xt)dt + O'(t, Xt)dBt
XO = x.

The standard Brownian motion, the Brownian motion with drift and the geometric Brownian

motion are solution of particular s.d.e.
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Example : Brownian motion with drift
The Brownian motion with drift is solution of the following s.d.e.

dXt = ,LLdt -+ O'dBt
Xo = x.

It is the diffusion process corresponding to the coefficients pu(t, X¢) = p and o(t, X¢) = 1.

Stochastic Integral
t t
tha:—i—/ ,uds—i—/ odBg
0 0

Xy =x+ ut + o By

The solution is
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Example : Geometric Brownian motion
The Geometric Brownian motion with drift is solution of the following s.d.e.

{ dS; = uSidt + 0S;dB;

So = x.
Stochastic Integral

t t
(2) Sy =Sy + / wSydu + / cS.,dB,
0 0

The solution is

R e

The results is obtained using the Ito’s Lemma.
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Ito’s Lemma
Lemma
Let (Xt)t>0 the solution of

dXt = ,LL(t, Xt)dt + O'(t, Xt)dBt
XO = X0

and let f(t, X¢) be a real-valued function of class C*>2.
Then

df (t, X¢) = (ZLGED 4 (e, Xy) 2L 4 162 (8, X, )M)dt—l—a(t X:) s dB

We can write

df (t, X¢) = a(t, Xy of

with
of N o?(t, X;) O%f
ot 2 0X?

Ot(t, Xt) =

29



Example

dSt = ,LLStdt + O'StdBt

So==x

Using Ito’s lemma
B

Let us consider X; = B; and
(u—la2)t—|—aBt
St = f(t, Bt) = Soe 2
I[to’s lemma implies that

1 1
dSt = df(t,Bt) = ((,LL — 50'2)375 + §G2St)dt + O'StdBt = ,LLStdt + O'StdBt
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On the contrary, let is consider X; = S; and

f(t, St) == ln(St)

Ito’s lemma implies that

1
din(Sy) = df(t,5;) = (u-— 5aQ)dt + odB;
or in the integral form
T
/ 1din(Sy) = / (,LL——O' )dt—i—/ o dBy
0
n(S)ly = (b— 50 ) [ty + o [Biy
S 1
in(=—) = (n—=0")T+o(Br — Bo)
So 2
S 1
S—Z = exp [(u — EJQ)T + O'BTj|
Then
1
(3) St = So exp {(u — 502)T + O'BT.j|
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Example
Consider f(t,z) = z? and X; = B;. Then

f(t,B:) = B}

I[to’s lemma implies that

1

dB? = df(t, By) = (52) dt + 2B;dB; = dt + 2B;dB;
In the integral form
tq t
B? = B] +/ —2du—|—/ 2B, dB,

0o 2 0

so that

t 1
/ BydB, = —(B; —t).
0 2
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Theorem (Existence and Uniqueness)

t t
(4) X =x+ / u(s, Xs)ds + / o(s, Xs)dBs,
0 0

If 4 and o are continuous functions, and if there exists a constant K < +o00, such that :
2. |u(t, )| + ot 2)| < K(1 + |=))

then, for any 7" > 0, (4) admist a unique solution in the interval [0, T'].
Moreover, this solution (X)o<s<7 satisfies :

E( sup |Xs|2) < 400
0<s<T
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Simulation diffusions paths
Euler Discretization Scheme

AXt = Xt—I—AT — Xt = [,L(t, Xt)At —|— O'(t, Xt)ABt

XOICL'Q

Start tg =0, zg, AT = L
for k=1,...,N
BEGIN:
tg = tx—1 + AT}
simulation of g ~ N (0, 1);
TeaT = T(h—1)AT + W@ k—1)AT> th—1)AT + 0(T(—1)AT> th1)gV AT
END:

2
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Brownian motion

A Brownian motion is a real-valued, continuous stochastic process (X;);>0 with indipendent,
normally distribuited and stationary increments. In other words :

® BO = 0.
e continuity.
e indipendent increments : if s < t, By — Bs is indipendent of Fs = (B, u < s).

e stationary increments : if s <t, By — B; and By_s have the same law.
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Continuous-time martingale

Let us consider a probability space (€2, A, P) and a filtration F := (F¢,t > 0) on this space.

Definition An adapted family (M;,t > 0) of integrable random variables is a (F;)-martingale if
for each s < t,
E (M| Fs) = Ms,.

It follows from the definition that if (M;);>¢ is a martingale, then E(M;) = E(Mj), for each t.

B is an Fi-martingale.
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Markov property

The intuitive meaning of the Markov property is that the future behaviour of the process
(X¢)t>0 after t depends only on the value X; and is not influenced by the history of the process
before t.

Mathematically speaking, (X¢):>0 satisfies the Markov property if, for any function f bounded
and measurable and for any s and t, such that s < ¢, we have

E(f (Xe) [Fs) =E(f (Xe) | Xs) -

This property is satisfied for a solution of the equation (4).

This is a crucial property of the Markovian model and it will have great conseguences in the
pricing of options.
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Black-Scholes model

Risk-free asset
dSy = rS}dt
Sy = 1.

Risk asset
{ dSt = ,LLStdt —|— O'StdBt

So = x.
with (B¢)¢>0 standard brownian motion under the historical probability P.
The short-term interest rate is known and is costant through time.
The stock pays no dividends or other distributions.
There are no penalties to short-selling.

It is possible to borrow any fraction of the price of a security to buy it or to hold it, at the
short-time interest rate.

Absence of arbitrage opportunities.
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Financial interpretation of the parameters

r istantaneous interest rate : [0%, 12%)]

p expected return of the risky asset.

o is the volatility o.
This is vey important parameters : [30%, 70%] in the equity market.

risk premium A\

Then
uw=r-—+ Ao

The expected return p of the risky asset is the sum of the return of the no-risky asset plus
something proportional to o.
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We can write

dSt = ’I"Stdt + O'St(dBt + )\dt)

The Girsanov theorem gives
dB; = dB; + \dt

with Et standard Brownian motion under the risk neutral probability Q.
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Dinamics under the risk neutral probability measure

dS; = rS;dt + 0S;dB;
o {

SOICIZ.

with B\t standard Brownian motion under Q).
The solution(5) is

S = xe
Then
S _
Eq <_T|]:t> ="
St

41



Radon-Nikodyn Theorem

Let P and @Q be two probabilty measure on (2, F)

If Q is absolutely continuous with respect to P, (A € F, P(A) =0 — Q(A) = 0), then there
existe a unique r.v. X > 0, F-misurable such that

Q(A) = / X dP
A
The random variable X is commonly written as
d
aQ _
dP

X is called the Radon-Nikodyn derivative.
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Change of probability measure in the Gaussian case
Let use consider Z ~ N(u,1) under P.
Then there exists Q so that Z(0,1) under Q where

dQ@Q = e—/JuZ‘F%HQd]P).

In fact
z 1 —(z—p)?>

P(Z<z)= / dP(w) = / e 2 dx,
{w: Z(w)<z} —oo V2T

and

z 1 _332

1 2
Q(Z < 2) :/ dQ(w) :/ e M2 (WIT 31 gp(w) :/ e 2 d.
{w: Z(w)<z} {w: Z(w)<z} —oo V2T

Moreover it holds

Ep [f(Z)] — Eq [f(Z)e“Z_%“Q] and Eq [f(Z)] — Ep [f(Z)e_“Z+%“2].
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Girsanov’s Theorem
Let B¢ be a Brownian motion under (€2, F,P) adapted to the filtration F.
Let (Zt)o<t<T be the process defined by :

L2
Zt:exp(—)\Bt—EA t).

Then, under the probability measure ) with density Zr with respect to P

dQ = ZrdP

the process (B\t)ogth given by B\t = B: + At, is a standard Brownian motion under Q.
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Risk neutral pricing formula

This holds for each asset:

Equivalently
Vi =Eq (e " Vel F) .

The price of a contingent claim is the expected value of the discounted payoff.

e "V, = Eqg (e_TTVT|}—t) .

Discounted prices are martingales.
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Black-Scholes formula for European Call options
The price at time t of an European Call option in the Black-Scholes model

—r (T — —r(T— r—152 - o —
Ct :EQ (6 (T t)CT|,7:t> :EQ (6 (T t)(Ste( 2 NT=t)+o(By —Bt) —K)_|_>

is given by
C, = S;N(dy) — Ke "I N(dy)

with
log (%) + ('P—i- %) (T —t)

do =di —oT — t
o1 —t 2 !

dy =

and N (z) the distribution function of the standard Gaussian variable

1 d 2
N(d) = E/ e 2 dy.
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Black-Scholes formula for European Put options
The price at time t of an European put option in the Black-Scholes model

—r — —r — r—la2 — o —
Pt :EQ (6 (T t)PT|]:t) :EQ (6 (T t)(K— Ste( 2 )(T t)+ (BT Bt))+)

is given by
P, =Ke "TTTIN(—dy) — Sy N(—d1)
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Implementation of the formula

The price of the call option depends on six parameters.
C=C(St =z,t, T,K,o,r)

The strike K and the maturity T are specified in the contract.

r is constant. But in general this is not true (Vasicek or CIR model).

The volatility cannot be observed directly. In practice, two methods are used to evaluate o

— The historical method: in the BS model, 62T is the variance of log(S7) and the
variables log(Sar/So), log(S2/SaT), ..., log(SNAT/S(N_l)AT) are i.i.d random
variables.

Therefore, o can be estimated by statistical means using past observations of the asset
price.

— the "implied volatility” method: some options are quoted on organized markets; the
price of options being an increasing function of o, we can associate an ”"implied”
volatility to each quoted option, by inversion of the Black-Scholes formula.

C°%%(50,0,T,K) = C(S0,0,T, K,S(K,T),r)

>} is called implied volatility. Due to the market imperfections > has a typical
dependence on K called SMILE EFFECT.
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n=m=6, 30 iter.

03
0.25
03
L o2
0.2
L 1015
0.1
L o1
0 - Joos
_01 L _0
-0.05
01
-0.15
02
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Approximating the distribution function of g ~ N (0, 1)

Set t = 1; then:
+px’
2 .
1 — —5= exp(— %) (bt + bot? + bat® + byt* + bst®) if x>0

N(x) = 2
\/%exp(—%)(blt—i—bgtg + bat® + byt* + bst®) if <0

with the following constants :
p = 0.2316419;
b1 = 0.319381530;
bo = —0.356563782;
bs = 1.781477937;
by = —1.821255978;
bs = 1.330274429;
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Approximating the distribution function of g ~ N (0, 1)

double N(double x)
{ const double p= 0.2316419;
const double bl= 0.319381530;
const double b2= -0.356563782;
const double b3= 1.781477937;
const double b4= -1.821255978;
const double bb= 1.330274429;
const double one_over_twopi= 0.39894228;

double t;
if(x >= 0.0)
{

t=1.0/ (C1.0+p*x);
return (1.0 - one_over_twopi * exp( -x * x / 2.0 )
x t * (t *x(t* (tx*x (t*bs+bd)+Db3)+Db2) +bl));

}
else
{/* x <0 */
t=1.0/ (1.0 -p*x);
return ( one_over_twopi * exp( -x * x / 2.0 ) *
t* (t*x(t*x (tx*x (t=*bsb+bd)+Db3)+Db2) +bl));
}
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Scilab

function [y]l=Norm(x)
[y,Q]l=cdfnor("PQ",x,0,1);
endfunction

52



Price of a Call option

main ()

{

double sigmasqrt,dl,d2,delta,price;

sigmasqrt=sigma*sqrt(t);
d1=(log(s/k)+r*t) /sigmasqrt+sigmasqrt/2.;
d2=dl-sigmasqrt;

delta=N(d1);

/*Pricex/
price=s*delta-exp(-r*t)*xk*xN(d2) ;
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Price of a put option

main()

{
double sigmasqrt,dl,d2,delta,price;

sigmasqrt=sigma*sqrt(t);
d1=(log(s/k)+r*t)/sigmasqrt+sigmasqrt/2. ;
d2=dl-sigmasqrt;

delta=N(-d1);

/*Pricex/
price=exp(-r*t)*k*N(-d2)-deltax*s;
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Put-Call Theorem Parity
We have the following put-call parity between the prices of the underlying asset S; and

European call and put options on stocks that pay no dividends:

Ct = Pt —|— St — Ke_r(T_t).
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Payoff Call

Payof Put

200
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Proof of the Black-Scholes formula

1 2
B R R

Then
1 2
C(t,x) = EQ [ <$€_§J (T—t)+o/T—tg . Ke_r(T_t)> ]
+
Set
2
10g(£) + (r + < (T—t)
di = - ( - > do = di — J\/m

ovT —t

1 2
C(t,x) = E {(xedmg_ﬁﬁ (T—t) _ Ke—r(T—t)) 192_%}

o -
_ /+ (xedmy—%a2(T—t) . KG_T(T_t)> idy

— 42 V2
do 1 2 e_y2/2
= / (xe—amy—id (r'—t) Ke_r(T_t)> dy
- V2T
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C(t,x) = /d2 (xe—amy—a2('f’—t)/2 B Ke_T(T_t)>

— OO

The change of variable z =y + o+/(T — t), gives :
C(t,z) = zN(d1) — Ke "T7YN(dy),

with :

1 d 2
N(d) = —%/ e /Qdaj.
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Monte Carlo method in the Black-Scholes model

We want compute
P=e¢"TEo [(K — Sr)4 ]

in the Black-Scholes model
ST = Soe(r_%JQ)T_HTBT
The payoff function can be written in the following way
h(Br) = (K — Soe(T= 27 )T +oBry
We can approximate the price with

Lo (X1) F -+ h(X)

n

P e

X1,..,Xn ~ N(0,T).
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Monte Carlo algorithm
European Put in the Black-Scholes model

main ()

{
double mean_price,mean2_price,brownian,price,price_sample,error_price,inf_price,sup_price;
mean_price= 0.0;
mean2_price= 0.0;
for(i=1;i<=N;i++)

{

brownian=gaussian() *sqrt (T) ;
price_sample=MAX(0.0,K-x*exp((r-0.5*sigma*sigma)*T+sigma*brownian)) ;

mean_price= mean_pricet+price_sample;
mean2_price= mean2_price+SQR(price_sample);
}

/* Price */
price=exp(-r*T)*(mean_price/N);
error_price= sqrt(exp(-2.*r*T)*mean2_price/N - SQR(price))/sqrt(N-1);
inf_price= price - 1.96*(error_price);
sup_price= price + 1.96x(error_price);
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