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Pricing and hedging methods for derivatives

- Coxz-Ross-Rubinstein discrete model.

- Black-Scholes continuous model

- Numerical methods Tree methods, Monte Carlo methods, Finite Difference methods.



Plan

Cox-Ross-Rubinstein model. Pricing and Delta hedging in discrete models. Markov chains.
Dynamic programming equations. European and American options in CRR model.

Monte Carlo Methods. Simulation methods of classical law. Inverse transform method.
Central Limit Theorem. Computation of expectation. Variance reduction techniques
(Control Variate, Importance sampling).

Geometric brownian motion. Ito’s Lemma. Black-Scholes model. Monte Carlo Methods for
European options.

Greeks. Estimating sensitivities. Dynamic hedging in the Black-Scholes continuous model.
Numerical algorithms for portfolio insurance.

Tree methods for European and American options. Convergence orders of binomial
methods.

Monte Carlo methods for Exotic options (Barrier options, Asian options, Lookback options,
Rainbow options).

Tree methods for exotic options. The Ritchken method. The forward shooting grid
methods. The singular points method.

Monte Carlo Methods for American options. The Longstaff-Schwartz method.

Finite difference methods for the heat equation and the Black-Scholes partial differential
equation. Explicit Scheme. Implicit scheme. Cranck-Nicolson scheme. Consistency and
stability of the schemes.

Matlab sessions with the implementation of the proposed numerical algorithms.



Teaching Dates
e 5-6 April
o 12-13 April
e 19-20 April
o 24-25 April
e 3-4 May
Teaching Material
e Slides of the course.
e J.Hull Options, Futures, and Other Derivatives. Prentice Hall

e N.H. Bingham R. Kiesel. Risk-Neutral Valuation: Pricing and Hedging of Financial
Derivatives. Springer Finance

e P.Glasserman. Monte Carlo methods in Financial Engineering. Springer

Examination
e The final assessment will require the solution of exercises on topics examined during lessons.
e 10 May Written Examination.

e 11 May Discussion of the Written Examination.



Financial options

European Call options A Call option is a financial instrument giving the right (but not to the
obbligation) to the owner to buy the underlying asset at a given price (called strike) at prefixed
date (called maturity).

The writer will have an obbligation to sell at these conditions.

Because of the asymmetry of the contract :

the owner of the option has to pay to the writer the prime of the option.

the writer will provide to the owner max(0, ST — K) at maturity.

The quantity max(0, S — K) is called the payoff of the option.
European Put options A Put option is a financial instrument giving the right (but not to the
obbligation) to the owner to sell the underlying asset at a given price (called strike) at prefixed
date (called maturity).

The payoff of the option is now max(0, K — Sr).
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Pricing of financial options

What is the fair price of these financial derivatives products?

The problem of the evaluation of this contingent claim is the problem of the evaluation of a
random variable G > 0 received at maturity.

The main message of Black-Scholes-Merton(1973) is that the fair price of a financial derivative is
the price obtained using a hegding procedure under absence of arbitrage opportunities (AOA).
We will study numerical methods for two models :

Discrete model of Cox-Ross-Rubinstein, based on Markov chains.

Continous model of Black-Scholes, based on continous stochastic process.



Market hypothesis

The short-term interest rate is known and is constant through time.
The stock pays no dividends or other distributions.
There are no penalties to short-selling.

It is possible to borrow any fraction of the price of a security to buy it or to hold it, at the
short-time interest rate.

Absence of arbitrage opportunities. The absence of risk-free plans for making profits
without any investements



Put-Call Theorem Parity
We have the following put-call parity between the prices of the underlying asset S; and

European call and put options on stocks that pay no dividends:

Ct = Pt -+ St — KG_T(T_t)



Cox-Ross-Rubinstein model

Risky asset H1: 0 < d < 1 < u.

Let us immagine that we are tossing a coin.

When we get “Head”, the stock price moves up.

When we get a “Tail”, the price moves down. Consider Q = {H, T}, w € Q.

Sl(w) _ { Sl(H) = Sou

S1(T) = Sod
H So'u
o T
| 1 So - d
0 1
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Let us consider an European call option with strike K e maturity 1.

max{0, Sou — K} = (Sou— K)4+ if w=H
Vi(w) =
maX{O,Sod—K} = (Sod—K)+ if w=T

So =50, u=1.1,d=0.9 K =50

(55 —50)L =5 if w=H
Vi(w) =
(45—-50)4 =0 if w="T
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Replicating portfolio
The seller of the option at time 1 have to pay

Vi(w) = ( )+
(Sod — K)4+ if

How to compute V[, the arbitrage price of this options at time zero?

Idea : Dynamic hedging using a portfolio («, 8) € R? where
a the quantity invested in the risky asset at time zero.

B the quantity invested in the money market at time zero.

The value of the portfolio at time 0 is given by:
Vo =aSo+8 ==V, —aSo
For hedging purposes we need

Vi(w) = Vi(w)

No-Arbitrage conditions requires that
Vo = VWo

12



The value of the portfolio at time 1 is given by:

(x) aS1(H)+B(1+R)=Vi(H)
aS1(T) + B(1 + R) = Va(T)
Solving the system in the unknown variables Vj, «, B :

Vi(H)=Vv; (T)
S1(H)—=51(T)

Now we can compute V.
From (*) we have:

aS1(H) 4+ (Vo —aSg)(1+ R) =asSi1(H)+ Vo(1+ R) —aSe(l1 + R) = Vi (H)

1

e Vi(H) + &(So(1+ R) — Sou)|

Vo [Vl(H) — &S1(H) + aSo(1 + R)] _

1
T
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Then

1

Vo = T [Vl(H) +a(So(1+R) — Sou)}
B 1 Vi(H) — Vi(T)
- Vi) + e (S0 (14 B) - Sou)
! [(u —dVi(H) + (1 + R)Vi(H) — uVi(H) — (1 + R)Vi(T) + uVl(T)]
~ (1+R) (u — d)
1 ([(1+R) -4 (u — (14 R))
= GERL mog M g i)
Consider
(14 R)—d
- u —d
and
. u—(1+R)
4= u—d
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Risk-neutral pricing formula

1 1
1 Vo= —|qVi(H g1 (T)| = E,| ——V;
(1) 0= g [V D V(D] = Ba[ v
Recall the hypothesis (H2:d < 14+ R < u).
Therefore

1+ R)—d R —(14+ R

q:( ) s0 g=" ( )>0
u—d u—d
qg+q=1

q is called the risk-neutral probability.
We did not define a probability measure.

The pricing formula (7) holds for each derivatives.

15



Risk-neutral valuation formula

(2) Vo= By o]
(3) B[] =a+m)
Oss

The price of a contingent claim is the expected value of the discounted payoff with respect to an

equivalent martingale measure.

The expected return of each contingent claim is equal to the return of the risk-free asset.

16



Two periods CRR model

Risky asset HI: 0 < d < 1 < u.
Consider Q ={HH,HT, TH, TT}, w € Q w = (w1,w3).
The asset price at time 2 is given by

So(HH) = Sou?
S2(HT) = SQ(TH) = Soud
So(TT) = Sod?

Risk-free asset H2: d < 1+ R < w.

17
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Let us consider an European Call option with strike K e maturity 2.
The value of the option at time 2 is given by:

p

(Sou® — K)y if w=HH
Va(w)=<¢ (Soud - K)y if w=HT or w=TH
(Sod? — K)y if w=TT

\

So = 45.454545, w = 1.1, d = 0.9, K = 40

f

(55 —40)y =15  if w=HH

Va(w) =49 (45—40)y =5 if w=HT or w=TH

(36.81 —40)L =0 if w=TT

\
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Dynamic hedging
The value of the portfolio at time 0 is given by:

Vo = a0So + o = Bo = Vo — aSo
For hedging purposes we need

Va(w) = Va(w)

No-Arbitrage conditions requires that
Vo = Vo Vi=W

The value of the portfolio at time 1 is given by:

(4)
[ (4.1) Vi(H) = apS1(H) 4+ (Vo — @So)(1 + R) = apSou + (Vo — a0So)(1 + R) = Vi (H)
if
(4.2) Vi(T) = aoS1(T) + (Vo — aSo)(1 + R) = apSod + (Vo — a0S0)(1 + R) = Vi (T)
| if

Then \//I depends on w; the outcome of first coin toss.
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Now

Vi=a181 461 = B1=Vi — aS:

where a1, 81, S1 depends on wj.
Rebalancing the portfolio
The value of the portfolio (V5) at time 2 is given by:

( (5.3) Va(HH) = on(H)Sa(HH) + (Vi (H) — o (H)S) (H))(1 + R) = Va(HH)
(5.0 VAT = o (H)S5(HT) 4 (Vi) — o (S (HY(1 4 B = Vo(HT)
O (55) TH(TH) = ar(T)S5(TH) 4 (Vi(T) — (D)5 (TN(1 4 B) = Va(TH)
5.6 ToIT) = an(TYSH(IT) 4 (V(T) — ax (TSI + B) = Va(TT)
it
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From (5.5)-(5.6) it follows
Vo(TH) — Vo (TT)

a1 (T) = So(TH) — So(TT)
substituiting this into (5.5)
T = g aVa(TH) +qVa(TT)]|
From (5.3)-(5.4) it follows
iy _ Ve(HH) — Va(HT)
o(H) = o HH) — 8,(HT)
substituiting this into (5.3)
Vi) = [aVa(HH) + qVa(HT)]|
From (4.1) and (4.2) it follows
_ Vi(H) - Wi (T)
“0 T S (H) = S.(T)
1
Vo = g [0Vi () + VA ()]

22



Risk-neutral pricing formula

1

[q2V2(HH) +qqVa(TH) + qqVo(HT) + @\2V2(TT)] = E4 [ﬁvz]

The price of a contingent claim is the expected value of the discounted payoff with respect to an

equivalent martingale measure.
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n periods CRR model

Risky asset H1: 0 < d < 1 < w.
w € Q with 2" w = (w1,,wn).

If n =66, 266 =7 x 102 , but because of recombining property there are n + 1 final
nodes.

Sk_l(wl,...,wk_l)u if
Sk(wl, e ,wk_l,wk) =
Sk_l(wl,...,wk_l)d if

Risk-free asset H2: d < 1+ R < w.

524-1 = (1+ R)S,

24



Vi (w) = (Sn(w) — K) 4

V). is the value of the option at time k. It holds:

1 _
Vi (Wi, ..o wi) = I+ R [qVk+1(w1,---,wk,H) + qVier1(wi, ... 7wkaT)]
Vk—i—l(w17°° 'awkaH) - Vk—|—1(w17° --,Wk;,T)
ozk(wl, . e ,wk) =
Skr1(wi, ..., wr, H) — Spy1(wi, .., wi, T)
/j’k(wl, ... ,wk) = Vk(wl, . ,wk) — ak(wl, e ,wk)Sk(wl, .. ,wk)

25



Risk-neutral pricing formula
(7)
1 1

o= B = e B0 = e [ 5 () 0t

1
(1+ R)"-

Vi = Eq| Vi Fi |

1 1
Vi = By | ————V,,|F
(1+RrR)» " q[(l—i—R)" | h]

E,[{H17] = 1+ B

26



Replicating portfolio algortihm

Start tg =0, So = x.
Vo = C(0,x)
Compute ag = (C’(l,:c*u) — C(l,x*d))/(:v*u —a;*d);
Bo = Vo — Soao;
for k=1,...,N —1
BEGIN;
simulation of Si;

Vi = ar—1Sk + Br—1(1 + R);

rebalancing the portfolio;

aE = (C(k—i—l,u*Sk)—C’(k+1,Sk*d)>/(Sk*u—Sk *d);
Br = Vi — Ska;

END;

simulation of Sy

VN =an-1SN + Bn-1(1 + R);

27



A portfolio V is self-financing if there is no consumption or investment at any time ¢t > 0.

Trading strategies
Vk:akSk—l—,Bk, kzO,..,n
V' is self-financing iff
Vi = apSk + Bk = ag—1Sk + Br—1(1 + R)

The variation in its value is only due to the variations in the value of the underlying assets.

An arbitrage is a self-financing portfolio such that

L P(VN >0)>0

The CRR model with d < (1 + R) < u is a complet market: every contigent claim with

payoff G = f(Sn) can be replicated perfectly with a self-financing portfolio composed of risky

asset and risk-free asset.

28



A o-algebra is a collection F of subsets of 2 if:
(i) Qe F,
(ii) A e F = A° € F,

(iii) if for any sequence A, € F we have

Us 1 An, €F

Definition

Let (2, F, IP) be a probability space. A real random variable is a function X :  — R such that
X' B)={weQ: X(w)eB}Ye F

for all Borel sets B € B. We say that X is F-measurable

29



Conditional expectation
Let (€2, F, IP) be a probability space and G a sub-o algebra of F.

Let X a real random variable integrable (E(|X|) < +0c0). Then there exists a random variable Y
G-measurable integrable such that for each G € G

E(X ﬂg) = E(Y ﬂg).

The random variable Y is called the conditional expectation and is denoted by

E(X19)

30



Property

1. If X is G-measurable, F(X|G) = X, a.s.
2. E(FE(X|G)) =FE(X).

3. Linearity :
FE (aX +bY|G) =aF (X|G)+bE (Y|G) a.s.

4. ’Taking out what is known’ :

If Z is G-measurable, FE (ZX|G) = ZFE (X|G) a.s.

5. Tower property : if A is a sub-o algebra of G, then:
F(E(X|G)|A) =FE(X|A) a.s.

and

FE(FE(X|A)|G)=FE(X|A) a.s.
6. Best approximation : if Z is G-measurable and square integrable,
E[(X - E(X|9))’] < B[(X — 2)°] as.

F (X|G) is the best approximation in least square sense of X using a G- measurable random
variable.

31



Martingale
We recall that a filtration is a sequence of sub o-algebra of A such that F,, C F,, for m < n.

Wwe consider a probability space (€2, A, P), that is to say a space €2 equipped with a o-algebra
A, a probability P and a filtration F := (F,,n € N).

Definition A sequence (M, ,n > 0) of R-valued random variables is a F-martingale if
(i) M, is F,-measurable for all n,

(ii) E(|M,]|) < 4+oo for all n,

(iii) E [Mn4+1|Fn] = M, for all n.

Remark If (M,,n > 0) is a martingale, then

(8) FE [M,|Fn,] = M,, Vp > n.

32



Markov chain
Let (S,,n > 0) be a sequence of random variables taking values in a finite or countable set £.
S,, is a Markov chain if:

P(Sn—i—l — y|SO = 0o, - - -aSn — xn) — P(Sn—|—1 — ylsn — wn) .

The intuitive meaning of the Markov property is that the future behaviour of the process
(Sn)n>o0 after n depends only on the value S, and is not influenced by the history of the process
before n.

The Markov chain is said time homogenous if P (S,4+1 = y|S, = x) does not depend on n.
One then sets:

P(z,y) = P (Snt+1 =y|Sn = ).

The matrix (P(z,y))zce,tce is called the transition matrix of the Markov chain

Vx,y € € P(x,y) > 0 and, Vx ZyES P(x,y) = 1.

33



Random walks

Binomial random walk Let (X;,7 > 1) a sequence of i.i.d. (indipendent, identically distribuited)
random variables with P(X; = £1) = 1/2. Then S,, = X1 + - - 4+ X, is a homogenous Markov
chain with transition matrix P(z,z + 1) = P(z,x — 1) = 1/2, P(z,y) = 0 otherwise.

Trinomial random walk. Let (X;,7 > 1) a sequence of i.i.d. random variables P(X; = 1) = \/2
and P(X; =0) =1— A, with 0 < A < 1. The transition matrix is given by
Pz,x+1)=P(x,z — 1) = A/2, P(z,z) =1 — A, P(z,y) = 0 otherwise.

Random walk of Cox Ross-Rubinstein. Let (U,,n > 0) a sequence of i.i.d. random variables
with P(U,, =u) =p, P(U, =d) =1 —pand 0 < p <1, u and d real numbers.Let Sy = x and :

Snt+1 = SnUpn+1.

Let S, =« ][, U;. Sp is a homogenous Markov chain with transition matrix:

P(zx,zu) = P (Sh+1 =zulS, =) = D
P(zx,xd) = P (Sn+1 =zd|S, = x) = 1—0p
P(x,y) = 0 otherwise

34



Binomial random walk
2 _

35



Trinomial random walk

2 -
11 A
2
1—A 1—A
0
A
A
. 2 1— X
\
—2 | |
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Random walk of Cox Ross-Rubinstein
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More general definition of Markov chain

Let (€2, F, P) be a probability space. Let (F,,n > 1) a filtration.
A process (S,,n > 1) taking values in a finite or countable set £ is a Markov chain with the

family of transition matrices (P,) if :
e For all n, S,, is F,-misurable.

e For any bounded function

E (¢(Sn—|—1)|}-’n) = FE (¢(Sn+1)|sn)

38



Furopean option pricing

In the discrete models the European price could be written :

Vo =FE qb(SN)) ,

(v

where (S,,n > 0) is a Markov chain and r the intereste rate.

39



Dynamic programming algorithm

Let ¢(x) a bounded function. Let (S, ,n > 0) a Markov chain with transition matrix P.
Problem: compute

E (¢(Sn)) -
Let u be the unique solution of:
(9) { u(N,z) = ¢(x),
’U,(’I’L, CC) — Zyeg P(ZB, y)u(n + 1? y)

Then :
E (¢(Sn)|Fn) = u(n, Sn),

In particular:

u(0,z) = E (¢(Sn)| So = x).

40



Proof The process (M,,) defined by M,, := u(n, S,) is a F-martingale.
In fact because u is the solution to (9) and by the Markon property

u(n,Sp) =FE[u(n+1,5,41)|Sn] = Efu(n+1,S,4+1)|Fn]
Any martingale satisfies
FE [My|Fn] = M,, Yn < N.

Thus,
E [u(N,Sn)|Fn] = u(n, Sy).

As u(N,z) = ¢(z),
u(n, Sn) = E[p(SN)[Fn].

For n = 0 one gets

u(0, 50) = E [¢(Sn)[Fo] -

As a result, if Sg = x then
u(0,z) = E [¢(SN)] -

41



Binomial random walk S,, is a Markov chain with transition matrix
P(z,x+1) = P(x,z — 1) = 1/2. We have u(0,z)) = E(¢(Sn)|So = =), where u satisfies :
u(N,z) = ¢(x),
1 1
u(n,x) = §u(n +1,z+1)+ §u(n + 1,z —1).

Trinomial random walk S,, is a Markov chain with transition matrix
Pz,x+1)=P(zx,z — 1) = A/2, P(x,z) =1 — A. We have u(0,z)) = E(¢(Sn)|So = x), where
u satisfies :
uw(N,z) = ¢(z),
A A
u(n,x) = Eu(n +1L,z4+1)4+ (1 —-Nu(n+1,z) + Eu(n + 1,z —1).

42



Let ¢(x) a bounded function from £ to R and R a bounded function from £ to R4 . Let
(Sn,n > 0) be a Markov chain with transition matrix P.

N—1 .
E (}_[ T T RS +R(S7;)¢(SN)) -

=0

Problem: compute

Let u be the unique solution of:

10 { v(N,2) = 6(a),

v(n, @) =Xy ce Ty e(n + 1,y).

Then :

N—1 1
E (11 mqb(SNﬂ}"n) = v(n, Sn),

In particular:
N—1

1
v(0,z) = FE ( H mqﬁ(SNNSO = :13) :

1=0

43



Cox-Ross-Rubinstein random walk

Vo = 6(5n))

1
Bl ——
(s
we have Vi = v(0, So), where v satisfies :

v(N,z) = ¢(x),

1 —
v(n,x) = P v(n + 1, zd).

14+ R

vin +1,zu) +

14+ R

p = q Risk neutral measure

44



Tree algorithm
European Put options in discrete model

/*Risk neutral probability*/
pu=((1+R)-d) / (u-4d) ;
pd=1-pu;

/* Conditions at maturity*/
for (j=0;j<=N;j++)
P[j1=MAX(0.,K-S_O*pow(u,N-j)*pow(d,j));
/* Backward induction */
for (i=1;i<=N;i++)
for (j=0;j<=N-i;j++)
P[jl=pow(1.+R,-1.)*(pu*xP[jl+pd*P[j+1]);

/* E(\phi(S_N)|S_0=x) is given in P[0] =/

45



Optimal stopping problem
One of the simplest optimal control problems is the optimal stopping problem, where at any
time the only two possible control actions are:

e to stop the process (i.e. exercise the option);

e to let it continue (i.e. keeping option alive).

This problem will illustrate the basic ideas of dynamic programming for Markov chains and

introduce the fundamental principle of optimality in a simple way.

46



Stopping times
Definition A random time 7 is a random variable with values in NV {4o00}.

A random time 7 is a stopping time w.r.t. a filtration F := (F,,,n € N) if
{r <n} e F, for all n.

Proposition Let (M, ,n > 0) be a F-martingale and 7 a stopping time w.r.t to 7 . Then the
stopped process

Mn/\T

is a martingale.

Theorem Optional Stopping Theorem
Let N be a strictly positive integer. Let (M, ,n > 0) be a F-martingale.

For any bounded stopping time 7 such that n < 7 < N, a.s., there holds

E [M,|F,] = M,.

47



American option pricing

The American options can be exercised at any time between 0 and N.

The price at time 0 of an American option guaranteeing the cash—flow ¢(S,) if it is exercised at
time 0 < p < N is given by

1
(11) Voﬂ: sup FE | ————¢(S,)| .
’TGTO,N (1+R)T

where 7 € 7o n is the set of F— stopping times taking values in {0, - -, N}.



Dynamic programming algorithm

Let (Sp,n > 0) be a Markov chain with transition matrix P(xz,y). Let u be the unique solution
to

u(N,z) = ¢(x),

(12) u(n,z) = max (Zyes Pz, y)u(n +1,y), ¢(x)) '

Then, for all 0 < n < N,

sup FE [¢(ST)|]:TL] = u(n’ Sn)'
TETn,N

In particular, if Sg = x is deterministic, then

sup  E [¢(S7)] = u(0, z).
TETO’N
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Proof

o Set
Y, :=u(n,S,) — E [u(n, Sy)|Fn-1]

and
M, =Y1+---+Y,.

Then (M, ) is a F—martingale. In fact

E(Mpt+1 — Mn|Fn) = E(Ynt1|Fn)
= E[u(n—l—l,Sn+1)—E[u(n+1,Sn+1)|.7:n] | Fn]
= 0.

e Owing to the definition of u, it holds that
u(n,Sp) > Elu(n+1,S,41)|Fn] -
So,

un+1,S,41) —un,Sy) Kuln+1,S,41) — Elu(n+1,S,41)|Fn] = Ynt1.

49



e As Y11 > u(n+1,5,41) —u(n,S,), a straightforward computation leads to
Mp — My, Z u(p, Sp) - u(n? Sn)?

for all n and all p > n.

e Besides, if 7 is a stopping time such that n < 7 < N,
M; — M, > u(r,S;) —u(n, Sy,).
The Optional Stopping Theorem imply that
0=FE[M; — M,|Fn] > E[u(r,S:)|Fn] —u(n, Sy,)
Thus, we have just checked that
u(n, Sy) > E[u(r,S;)|Fn] -
For all stopping time taking values in [n, N], there holds
u(n, Sn) > E[¢(S7)]|Fn],

because from the definition u, u(n,x) > ¢(x).

50



e Consequently,

u(n,Sn) > sup E[¢(S;)|Fn]
TGTn,N

e It remains to find a stopping time 7, taking values in [n, N] and such that

u(n, Sn) = E [¢(ST;)|}—n] .

To this end, set
7" = inf {p > n,u(p,Sp) = &(Sp)}.

One can easily check that 7 is a stopping time.
Besides, 7, < N since u(N, Sn) = ¢(Sn).

e On the set {w;p < 7. (w)} we have
u(p, Sp) = E [u(p + 1, Sp1+1)[Fpl,

so that
Yp+1 = u(p + 1, Spt1) — u(p, Sp)-
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e Consequently,

Yn+1 = u(n—l— 1,Sn_|_1) — u(n, Sn)
Yore = un+2,S42) —un+1,8,41)
Yo% = u(r,,Srx) —u(r, —1,5:x_1).

e Therefore,
M:x — My = u(T,, Srx) —u(n, Sp).

Using the Optional Sampling Theorem, one gets

0=F [MT; - Mn|]—"n] — E [U(T:, ST;)U—“R] — u(n, Sn)
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e So we have

because by definition of 7.}

Remember that

This implies that

u(n, Sn) = E [¢(ST;)|}—n] .

U(’T:, ST,";) — Qb(ST;;)

u(n, Sn) > sup  E[p(S7)|Fn].
TETn,N
u(n,Sn) = sup FE[¢(S:)|Fn].

TGTn,N
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Optimal stopping time

The stopping time
7o = inf{p > 0, u(p, Sp) = ¢(Sp)}
satisfies
Lo El9(5)] = F 6(S.2)] -

The stopping time 7 is an optimal stopping time.
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Dynamic programming algorithm

Let (Sp,n > 0) be a Markov chain with transition matrix P(xz,y). Let u be the unique solution
to

u(N,z) = ¢(x),

13
Y un,) = max (,ee mhr Pl n)u(n +1,1), ¢(x))

Then, for all 0 < n < N,

sup FE [(1 + R)_(T_”)¢(ST)|}"n] = u(n, Sn).
TETn,N

In particular, if So = x is deterministic, then

sup E [(1 n R)‘%(ST)} — (0, z).
TETO’N
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Binomial algorithm
American Put option in discrete model

/*Risk neutral probability*/
pu=((1+R)-d)/(u-d);
pd=1-pu;

/*Intrinsic values*/
for (j=0;j<=2%N;j++)
InV[jl=max(0.,K-x*pow(u,N-j));
/*Terminal condition*/
for (j=0;j<=N;j++)
P[j1=InV[2*j];
/*Dynamic programming*/
for (i=1;i<=N;i++)
for (j=0;j<=N-i;j++)
P[j1=MAX (pow(1.+R,-1.)*(pu*P[j1+pd*P[j+11),InV[i+2%j1);

/* Price in P[0] =/
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