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Feynamc Kac Formula for Brownian motions
Suppose that the function f is continuous and bounded. Set

u(t, x) = E

[

f(x+ Bt)
]

where (Bt)t≥0 is a standard Brownian motion.

Then u is the unique smooth solution of the heat equation







∂u

∂t
=

1

2

∂2u

∂x2
for t > 0 and x ∈ R,

u(0, x) = f(x), x∈ R.
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By definition u(t, x) :

u(t, x) =

∫

f(y)e
−

(y−x)2

2t
dy√
2πt

.

Because f is bounded for t > 0 it holds :

∂u

∂t
(t, x) =

∫

f(y)e
−

(y−x)2

2t

(

(y − x)2

2t2
− 1

2t

)

dy√
2πt

,

∂u

∂x
(t, x) =

∫

f(y)e
−

(y−x)2

2t

(

(y − x)

t

)

dy
√
2πt

,

∂2u

∂x2
(t, x) =

∫

f(y)e−
(y−x)2

2t

(

(y − x)2

t2
− 1

t

)

dy√
2πt

.

Therefore for t > 0 :
∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x).

Moreover u(0, x) = f(x).
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Heat equation







∂u

∂t
=

1

2

∂2u

∂x2
for t > 0 and x ∈ R,

u(0, x) = f(x), x∈ R.

Such problem is called a evolution problem in time, as the solution at time t ≥ 0 is

determined from the values at time t = 0, which is called initial condition.

We are interested in the numerical computation of the price function u.

We will consider a deterministic numerical method: the finite difference method.

The numerical procedure consists in two steps:

• Discretize the problem by using a consistent and stable approximation method.

• Implement a computational method to solve the discrete equation.
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Finite Difference methods for the Heat equation

• We start by limiting the integration domain in space. The parabolic problem is

localized to a bounded domain in space Ωl =]− l, l[;

• an approximate solution is sought by means of finite difference methods

involving discrete functions. This leads to a problem in finite dimension.

The basic idea of the finite difference scheme consists in approximating the

derivation operator by a discrete operator. For example

u
′′(x) ∼=

u(x+∆x)− 2u(x) + u(x−∆x)

∆x2

The parameter ∆x chosen arbitrarily small has a fixed non zero value.
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Approximation

Consider a function u(x) : [−l, l] → R, u ∈ C4(−l, l).
Consider a uniform grid

xi = −l+ i∆x for 0 ≤ i ≤ N + 1.

with ∆x = 2l
N+1 .

By Taylor expansion

u(xi + ∆x) = u(xi) + ∆xu
′
(xi) +

1

2
∆x

2
u
′′
(xi + ν∆x), 0 ≤ ν ≤ 1

and

u(xi + ∆x) = u(xi) + ∆xu
′
(xi) +

1

2
∆x

2
u
′′
(xi) +

1

6
∆x

3
u
(3)

(xi) +
1

24
∆x

4
u
(4)

(xi + ν
+
x ∆x)

u(xi − ∆x) = u(xi) − ∆xu′(xi) +
1

2
∆x2

u
′′(xi) −

1

6
∆x3

u
(3)(xi) +

1

24
∆x4

u
(4)(xi + ν

−
x ∆x)

with −1 ≤ ν−
x ≤ 0, 0 ≤ ν+

x ≤ 1.
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Difference operators

Let us denote ui = u(xi), i = 1, .., N . Then

u
′(xi) =

ui+1 − ui

∆x
+O(∆x)

and

| − u
′(xi) +

ui+1 − ui

∆x
| ≤

∆x

2
max

x∈[−l,l]
|u′′(x)|

Moreover

u
′′(xi) =

ui+1 − 2ui + ui−1

∆x2
+O(∆x2)

and

| − u
′′(xi) +

ui+1 − 2ui + ui−1

∆x2
| ≤

∆x2

12
max

x∈[−l,l]
|u(4)(x)|
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Localized problem

The problem is solved in a finite interval Ωl =]− l, l[.

(1)



















∂u

∂t
=

1

2

∂2u

∂x2
for t > 0 and x ∈]− l, l[

u(t,±l) = 0 for each t > 0.

u(0, x) = f(x).

We impose Dirichlet boundary condition u(t,±l) = 0 for each t > 0.
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Finite difference

For the numerical solution of the problem by finite difference method, we introduce

a grid of mesh points

(tn, xi) = (n∆t,−l + i∆x), n = 0, ..,M and i = 0, ..., N + 1

where

∆t =
T

M
, ∆x =

2l

N + 1

are mesh parameters which are thought of as tending to zero.

∆t is the time step and ∆x is the space step.
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We approximate ∂
∂t

and ∂2

∂x2 .

∂

∂t
u(tn, xi) ∼=

u(tn+1, xi)− u(tn, xi)

∆t

and
∂2

∂x2
u(tn, xi) ∼=

u(tn, xi+1)− 2u(tn, xi) + u(tn, xi−1)

∆x2

Let be uni an approximation of exact solution u at the node xi and at time

tn = n∆t.

uni
∼= u(tn, xi)

We obtain the following explicit scheme.
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Explicit scheme

We have to solve directly at each time step















un+1
i

−un
i

∆t
= 1

2

un
i+1−2un

i +un
i−1

∆x2 , i = 1, .., N n = 0, ..,M − 1

u0
i = f(xi), i = 0, .., N + 1

un
0 = un

N+1 = 0, ∀n > 0

We can write

u
n+1
i =

λ

2
u
n
i−1 + (1− λ)un

i +
λ

2
u
n
i+1

with

λ =
∆t

∆x2
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Convergence of the Explicit scheme

We need that the solution of the scheme approximate the solution of the

corresponding PDE.

Moreover the approximation need improves as the grid spacings, ∆x and ∆t, tend

to zero.

A scheme that has such behaviour is called a convergent scheme.

• Probabilistic intepretation. The space step ∆x and the time step ∆t have

cannot be chosen indipendently one from the other. 0 < λ ≤ 1. Limit central

theorem

• The numerical analysis studies the convergence checking different properties.

Consistency, Stability
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• Consistency The notion of consistency enables us to measure the error

produced by approximating the continuous operator by a discrete

operator.

It can be computed on the exact solution of the continuous problem,

thanks to a Taylor expansion.

• Stability The approximation is bounded.
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Consistency

Definition We say that the scheme

un+1
i − un

i

∆t
−

1

2

un
i+1 − 2un

i + un
i−1

∆x2

is consistent with the operator

∂

∂t
−

1

2

∂2

∂x2

if for any smooth function v = v(t, x) the difference

[v(t+∆t, x)− v(t, x)

∆t
−
1

2

v(t, x+∆x)− 2v(t, x) + v(t, x−∆x)

∆x2

]

−
(∂v

∂t
−
1

2

∂2v

∂x2

)

(t, x)

goes to zero when ∆x,∆t→ 0.

The difference is called the truncation error for the function v.
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Accuracy

Definition The previous scheme is accurate of order q in time and p in space for the

operator

∂

∂t
−

1

2

∂2

∂x2

if for any smooth function v the truncation error goes to zero as

O(∆xp +∆tq)
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Consistency of the explicit scheme

Lemma The explicit scheme is consistent, accurate of order one in time and two in

space for the the heat equation operator ut −
1
2
uxx.

Proof From Taylor expansion we have for each v ∈ C2,4(R+,Ωl)

v(t+∆t, x)− v(t, x)

∆t
−

1

2

v(t, x+∆x)− 2v(t, x) + v(t, x−∆x)

∆x2
=

vt(t, x)−
1

2
vxx(t, x)+

∆t

2
vtt(t+νt∆t, x)−

∆x2

48
(vxxxx(t, x+ν

−
x ∆x)+vxxxx(t, x+ν

+
x ∆x)),

with 0 ≤ νt ≤ 1, −1 ≤ ν−x ≤ 0, 0 ≤ ν+x ≤ 1.
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Stability

But the consistency is not enough to let us prove the convergence of the scheme.

Another notion is required, that of stability.

Definition The scheme is said to be stable in the L∞ norm iff there is a constant

K > 0 indipendent of ∆t and ∆x such that for each n

‖un‖∞ ≤ K‖f‖∞,

where ‖un‖∞ = sup0≤i≤N+1 |u
n
i |.

The idea is that there can be no growth over time.
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Stability of the explicit scheme

Lemma The explicit scheme is stable in the L∞ norm iff λ = ∆t
∆x2 ≤ 1.

Proof

u
n+1
i =

λ

2
u
n
i−1 + (1− λ)un

i +
λ

2
u
n
i+1.

Under the hypothesis λ ≤ 1, the coefficients λ and 1− λ of the linear combinations

are positive or vanishes.

So that

|un+1
i | ≤

λ

2
|un

i−1|+ (1− λ)|un
i |+

λ

2
|un

i+1|,

and

‖un+1‖∞ ≤ ‖un‖∞.

The stability result is given by recurrence.
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Using apagoge, suppose now λ > 1. Let us consider fi = α(−1)i.

u1
i =

λ

2
α(−1)i−1+(1−λ)α(−1)i+

λ

2
α(−1)i+1 = (−1)iα(1−2λ) = fi(1−2λ).

Because |1− 2λ| > 1, we have not stability in the L∞ norm

‖u1‖∞ > ‖f‖∞.
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Convergence theorem : Explicit Scheme

Theorem Let u the exact solution of the heat problem.

Suppose that u ∈ C2,4(R+,Ωl).

Let un
i the numerical solution obtained with the explicit scheme. Suppose that

λ =
∆t

∆x2
≤ 1

(i.e. the scheme is stable).

Then, for each T > 0, it exists a constant CT > 0 (depending only on u and T )

such that

sup
0≤i≤N+1
0≤n≤M

|un
i − u(tn, xi)| ≤ CT (∆t+∆x2).

We can conclude that the explicit scheme is convergent when λ ≤ 1

lim
∆t,∆x→0

(

sup
0≤i≤N+1
0≤n≤M

|un
i − u(tn, xi)|

)

= 0.
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Proof By Taylor expansion at point xi in space and tn in time (Consistency

lemma) we have

u(tn+1, xi)− u(tn, xi)

∆t
−

1

2

u(tn, xi+1)− 2u(tn, xi) + u(tn, xi−1)

∆x2
= ǫni

with

ǫni =
∆t

2
utt(tn+νt∆t, xi)−

∆x2

48
(uxxxx(tn, xi+ν−x ∆x)+uxxxx(tn, xi+ν+x ∆x)),

with 0 ≤ νt ≤ 1, −1 ≤ ν−x ≤ 0, 0 ≤ ν+x ≤ 1.

Denote by

K = sup
−l≤x≤l,0≤t≤T

(|utt(t, x)|+ |uxxxx(t, x)|).

When n∆t ≤ T we have

|ǫni | ≤
K∆t

2
+

K∆x2

24

.
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Let us introduce the numerical error zni = uni −u(tn, xi). It is easy to see that

zn+1
i − zni

∆t
−

1

2

zni+1 − 2zni + zni−1

∆x2
= −ǫni .

So that

zn+1
i =

λ

2
zni−1 + (1− λ)zni +

λ

2
zni+1 −∆tǫni .

Using the hypothesis that

λ =
∆t

∆x2
≤ 1,

we have

|zn+1
i | ≤ ‖zn‖∞ +∆t(

K∆t

2
+

K∆x2

24
).
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So that

‖zn+1‖∞ ≤ ‖zn‖∞ +∆t
K

2
(∆t+

∆x2

12
).

and

‖zn+1‖∞ ≤ ‖zn‖∞ +∆t
K

2
(1 +

1

12
)(∆t+∆x2).

Because ‖z0‖∞ = 0 (u0
i = f(xi)) we conclude that for each n ≤ M

‖zn‖∞ ≤ n∆t
K

2
(1 +

1

12
)(∆t+∆x2).

This gives the result

sup
0≤i≤N+1
0≤n≤M

|uni − u(tn, xi)| ≤ CT (∆t+∆x2).

with CT = KT
2 (1 + 1

12 ).
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Fully Implicit scheme

The fully implicit scheme is given by:


















un+1
i

−un
i

∆t
= 1

2

un+1
i+1 −2un+1

i
+un+1

i−1

∆x2 , i = 1, .., N n = 0, ..,M − 1

u0
i = f(xi), i = 0, .., N + 1

un
0 = un

N+1 = 0, ∀n > 0

We have to solve at each time step a linear system.

24



Let us denove

Un = (un1 , . . . , u
n
N ) ,

and :

B =





















1 + λ −λ
2 0 . . . 0

−λ
2 1 + λ −λ

2 . . . 0

0 −λ
2 1 + λ −λ

2 0

. . . . . . . . . . . . . . .

0 0 . . . −λ
2 1 + λ





















,

Then at each time step we have to solve :

BUn+1 = Un.

25



B is invertible.

In fact, B is strictly diagonally dominant, i.e.

|bii| >
n
∑

j=1
j 6=i

|bij | = Λi, i = 1, .., n

Therefore, the union of the disks |z − bii| ≤ Λi, does not include the origin

z = 0 of the complex plan, and from the Gerschgorin Theorem, λ = 0 is not

an eigenvalue of B, proving B is nonsingular.
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Moreover, given the linear system Bx = g, then for each i :

−
λ

2
xi−1 + (1 + λ)xi −

λ

2
xi+1 = gi.

If λ > 0 we have :

|xi| ≤
‖g‖∞ + λ‖x‖∞

1 + λ
,

so that ‖x‖∞ ≤ ‖g‖∞. Therefore B−1 verify

‖B−1g‖∞ ≤ ‖g‖∞.

We obtain a result of unconditionally stability.

For each ∆x and for each ∆t

‖Un+1‖∞ ≤ ‖Un‖∞.
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Convergence theorem : Fully Implicit Scheme

Theorem Let u the exact solution of the heat problem.

Suppose that u ∈ C2,4(R+,Ωl).

Let un
i the numerical solution obtained with the fully implicit scheme. Then, for

each T > 0, there exists a constant CT > 0 (depending only on u and T ) such that

sup
0≤i≤N+1
0≤n≤M

|un
i − u(tn, xi)| ≤ CT (∆t+∆x2).

The fully implicit scheme is unconditionally stable.
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Proof By Taylor expansion at point xi in space and tn+1 in time we have

u(tn+1, xi)− u(tn, xi)

∆t
−

1

2

u(tn+1, xi+1)− 2u(tn+1, xi) + u(tn+1, xi−1)

∆x2
= ǫn+1

i

with

ǫn+1
i = −

∆t

2
utt(tn+1 + ν−t ∆t, xi)

−
∆x2

48
(uxxxx(tn+1, xi + ν−x ∆x) + uxxxx(tn+1, xi + ν+x ∆x)),

with −1 ≤ ν−t ≤ 0, −1 ≤ ν−x ≤ 0, 0 ≤ ν+x ≤ 1.

Denote by

K = sup
−l≤x≤l,0≤t≤T

(|utt(t, x)|+ |uxxxx(t, x)|).

When n∆t ≤ T we have

|ǫn+1
i | ≤

K∆t

2
+

K∆x2

24

.
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Let us introduce the numerical error zni = uni −u(tn, xi). It is easy to see that

zn+1
i − zni

∆t
+

1

2

zn+1
i+1 − 2zn+1

i + zn+1
i−1

∆x2
= −ǫn+1

i .

So that

Bzn+1 = zn −∆tǫn+1.

Using the fact that B is invertible and that

‖B−1g‖∞ ≤ ‖g‖∞,

we have

‖zn+1‖∞ ≤ ‖zn‖∞ +∆t(
K∆t

2
+

K∆x2

24
).
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As in the explicit case, this gives the result

sup
0≤i≤N+1
0≤n≤M

|uni − u(tn, xi)| ≤ CT (∆t+∆x2).

with CT = KT
2 (1 + 1

12 ).

We can conclude that the fully implicit scheme is convergent

lim
∆t,∆x→0

(

sup
0≤i≤N+1
0≤n≤M

|uni − u(tn, xi)|
)

= 0.
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Gauss factorization

We have to solve linear systems

Bx = g,

where x and g, are N dimensional vectors et B is tridiagonal matrix :

B =





























b1 c1 0 · · · 0 0

a2 b2 c2 0 · · · 0

0 a3 b3 c3 · · · 0

0
...

. . .
. . .

. . .
...

0 0 · · · aN−1 bN−1 cN−1

0 0 0 · · · aN bN





























.

Let be x = (xi)1≤i≤N and g = (gi)1≤i≤N .
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We proceed by this way: the matrix B is reduced to a lower triangular

matrix with the pivot method.
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Up Steps:

b′N = bN

g′N = gN

For i = N − 1, .., 1

b′i = bi − ciai+1/b
′
i+1

g′i = gi − cig
′
i+1/b

′
i+1
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After this transformation we obtain the equivalent system B′x = g′, with :

B′ =



























b′1 0 0 · · · 0 0

a2 b′2 0 0 · · · 0

0 a3 b′3 0 · · · 0

0
...

. . .
. . .

. . .
...

0 0 · · · aN−1 b′N−1 0

0 0 0 · · · aN b′N



























.
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Finally, x is computed.
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Downs Steps :

x1 = g′1/b
′
1

For i = 2, .., N,

xi = (g′i − aixi−1)/b
′
i

The complexity of the algorithm is linear.
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Computational complexity

At each time time step

• the implicit scheme costs 6N multiplications et 3N additions.

• the explicit scheme with λ = 1 costs 2N multiplications et N additions.

But we need consider the stability condition for the explicit scheme.

In a implicit scheme we can choose arbitrarily M .

For example we choose l = 1, T = 1, N + 1 =M = 200 so that ∆x = 0.01 and

∆t = 0.005

In a explicit scheme we cannot choose arbitrarily M because of the stability

condition.

For λ = 1, ∆t = ∆x2 = 10−4, therefore M = int( T
∆t

) = 10000!!.
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Crank-Nicolson scheme

Using a θ-scheme in time, 0 ≤ θ ≤ 1,we have



























un+1
i

−un
i

∆t
= (1− θ) 1

2

un
i+1−2un

i +un
i−1

∆x2 + θ 1
2

un+1
i+1 −2un+1

i
+un+1

i−1

∆x2 ,

i = 1, .., N n = 0, ..,M − 1

u0
i = f(xi), i = 0, .., N + 1.

un
0 = un

N+1 = 0, ∀n > 0

When θ = 1
2
, the theta-scheme is called the Crank-Nicolson scheme.

We have to solve at each time step the linear system

BU
n+1 = AU

n
,

with
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B =





















1 + λ
2 −λ

4 0 . . . 0

−λ
4 1 + λ

2 −λ
4 . . . 0

0 −λ
4 1 + λ

2 −λ
4 0

. . . . . . . . . . . . . . .

0 0 . . . −λ
4 1 + λ

2





















,

and :

A =





















1− λ
2

λ
4 0 . . . 0

λ
4 1− λ

2
λ
4 . . . 0

0 λ
4 1− λ

2
λ
4 0

. . . . . . . . . . . . . . .

0 0 . . . λ
4 1− λ

2





















.
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Consistency of the Crank Nicolson scheme

Lemma

The CN scheme is consistent, accurate of order two in space and two in time for the

the heat equation operator ut −
1
2
uxx.

Proof Using Taylor expansion at point xi in space and tn + ∆T
2

in time ...
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L
2 Stability

Definition The scheme is said to be stable in the L2 norm iff there is a constant

K > 0 indipendent of ∆t and ∆x such that for each n

‖un‖2 ≤ K‖f‖2,

where ||un||2 =
(

∆x
∑N

i=1(u
n
i )

2
)1/2

is the "discrete" L2 norm.

Lemma The Cranck-Nicolson scheme is unconditionally stable in L2 norm. It holds

‖un+1‖2 ≤ ‖un‖2.
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Convergence Theorem Let u the exact solution of the heat problem.

Suppose that u ∈ C3,4(R+,Ωl).

Let un
i the numerical solution obtained with the Crank Nicolson scheme. Then, for

each T > 0, there exists a constant CT > 0 (depending only on u and T ) such that

sup
tn≤T

||un − u(tn, x)||2 ≤ CT (∆t
2 +∆x2).

Therefore

lim
∆t,∆x→0

sup
tn≤T

||un − u(tn, x)||2 = 0
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Option Pricing and Partial Differential equation

In the case of complete markets, one can prove by arbitrage technique that the fair

price at time 0 of an European option which guarantees the cash flow ψ(Sx
T ) at

time T is by given

u(0, x) = EQ

[

e
−rT

ψ(Sx
T )

]

where Sx
t is the price of the underlying asset at time t with initial price S0 = x.

Now we use the Feynman Kac formula that give a relation between second order

partial differential equations and stochastic differential equation.
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Feynam Kac Formula

Let (Xt)t≥0 be the solution of the stochastic differential equation

X
x
t = x+

∫ t

0

µ(s,Xx
s )ds+

∫ t

0

σ(Xx
s )dBs,

Define the second-order operator

Af(x) =
σ2(t, x)

2

∂2f

∂x2
+ µ(t, x)

∂f

∂x

with f any real-valued function of class C2(R).

Suppose that u is solution of the following backward partial differential equation






∂u
∂t

+Au− ru = 0 in [0, T [×R

u(T, x) = ψ(x) in R

Then

u(0, x) = E

[

e
−rT

ψ(Xx
T )

]
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Black-Scholes equation

We recall that the price of an European option in the Black and Scholes model

dSt

St
= rdt+ σdWt

can be formulated in terms of the solution to a Partial Differential Equation.

After logarithmic transformation Xt = log(St) the price at time t of the option is

Vt = u(t,Xt) where u solves the parabolic equation






∂u
∂t

(t, x) + σ2

2
∂2u
∂x2 (t, x) + (r − σ2

2
) ∂u
∂x

(t, x)− ru(t, x) = 0 in [0, T )× R,

u(T, x) = ψ(x), ∀x ∈ R,

44



Localization

Let be x = log(S0). We start by limiting the integration domain in space: the

problem will be solved in a finite interval [x− l, x+ l].

For the numerical solution of the problem by finite difference method, we introduce

a grid of mesh points

(tn, xi) = (n∆t, x− l + i∆x), n = 0, ..,M i = 0, ..., N + 1

where

∆t =
T

M
, ∆x =

2l

N + 1

are mesh parameters which are thought of as tending to zero.

∆t is the time step and ∆x is the space step.
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θ-scheme

Using a θ-scheme in time, 0 ≤ θ ≤ 1,we have






























un+1
i

−un
i

∆t
+ θ σ2

2

un
i+1−2un

i +un
i−1

∆x2 + (1− θ)σ
2

2

un+1
i+1 −2un+1

i
+un+1

i−1

∆x2 +

θ(r − σ2

2
)
un
i+1−un

i−1

2∆x
+ (1− θ)(r − σ2

2
)
un+1
i+1 −un+1

i−1

2∆x
−

θrun
i − (1− θ)run+1

i = 0, i = 1, .., N n =M − 1, .., 0

uN
i = ψ(xi), i = 0, .., N + 1.

with Dirichlet boundary conditions

∀n = N − 1, ..., 0 u
n
0 = u

n
N+1 = 0
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Explicit scheme

First, let us discuss the case θ = 0.

We obtain

u
n+1
i = p1u

n
i−1 + p2u

n
i + p3u

n
i+1

where

p1 = ∆T (
σ2

2∆x2
−

µ

2∆x
) p2 = 1−∆T (r +

σ2

∆x2
) p3 = ∆T (

σ2

2∆x2
+

µ

2∆x
)

and µ = r − 1
2
σ2.

This scheme is stable if ∆T ≤ ∆x2

σ2+r∆x2 .

47



Implicit scheme

In the case 1
2
≤ θ ≤ 1 we have to solve at each time step, a linear system of the type

TU
n = SU

n+1

where T and S are tridiagonal matrix of the type




























b1 c1 0 · · · 0 0

a2 b2 c2 0 · · · 0

0 a3 b3 c3 · · · 0

0
...

. . .
. . .

. . .
...

0 0 · · · aM−1 bM−1 cM−1

0 0 0 · · · aM bM





























.
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The coefficient of T are given by

ai = θ∆T (
µ

2∆x
− σ2

2∆x2
), bi = 1 + θ∆T (r +

σ2

∆x2
), ci = −θ∆T (

µ

2∆x
+

σ2

2∆x2
).

The coefficient of S are given by

ai = (1−θ)∆T (
σ2

2∆x2
− µ

2∆x
), bi = 1− (1−θ)∆T (r+

σ2

∆x2
), ci = (1−θ)∆T (

µ

2∆x
+

σ2

2∆x2
).
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American option

The price of an American option u solve the following variational inequality






max( ∂u
∂t

+ Au, ψ − u) = 0, (t, x) ∈ [0, T [×R

u(T, x) = ψ(x), x ∈ R.
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American options

Consider the solution of this system of inequalities






















∂u

∂t
+Au ≤ 0, u ≥ ψ, (t, x) ∈ [0, T )× R

(

∂u

∂t
+Au

)

(ψ − u) = 0, (t, x) ∈ [0, T )× R

u(T, x) = ψ(x), x ∈ R

Then u(0, x) = supτ∈T0,T
E
(

e−rψ (Sτ )
)

.
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Barrier options

We consider the PDE in the logarithmic variable







∂u

∂t
+ (r − σ2

2
)
∂u

∂x
+
σ2

2

∂2u

∂x2
− ru = 0

u(0, x) = (K − e
x)+,

together with the Dirichlet boundary conditions steming from the rebate on one (resp. both)

side(s). For example in the down-and-out case

u(t, log(D)) = R
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Rainbow options

We will consider American options written on two dividend-paying stocks. Let Si
t (i = 1, 2) be

the stock-price at time t of the stock i which satisfies the following stochastic differential

equation:

dSi
t

Si
t

= (r − δi)dt+

2
∑

j=1

σijdW
j
t i = 1, 2

Let αi = r − δi − 1
2σ

2
i and xi = log si, i = 1, 2.

After a standard logarithmic transformation (X1
t , X

2
t ) = (log(S1

t ), log(S
2
t )), the price at time 0

of an European option can be formulated in terms of the solution u(t, x1, x2) to the following

partial differential equation







∂u
∂t

+
σ2
1
2

∂2u

∂x2
1

+
σ2
2
2

∂2u

∂x2
2

+ α1
∂u
∂x1

+ α2
∂u
∂x2

+ ρσ1σ2
∂2u

∂x1∂x2
− ru = 0 in [0, T [×R

2

u(T, x1, x2) = ψ(ex1 , ex2 )
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Asian options

The price at time t of an Asian option is given by:

V (t, St, At) = e
−r(T−t)

E(g(ST , AT )|Ft).

The price of the Asian option V is solution of the following PDE:

{

∂V
∂t

+ σ2S2

2
∂2V

∂S2 + rS ∂V
∂S

+ 1
t
(S − A) ∂V

∂A
− rV = 0,

V (T, S,A) = g(S,A).

The PDE is difficult to solve since the parabolic operator is degenerated in the A-variable.

54



Lookback options

The price of an European Lookback option can be formulated, after a logarithm change of

variable, in terms of the solution u to the following PDE















∂u
∂t

+ σ2

2
∂2u

∂x2 + (r − q) ∂u
∂x

− ru = 0 in [0, T [×{x < y}
∂u
∂y

= 0 in {x = y}
u(T, x, y) = ψ(ex, ey)
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