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Feynamc Kac Formula for Brownian motions
Suppose that the function f is continuous and bounded. Set

u(t,z) = E|f(z + By)]

where (B¢)¢>0 is a standard Brownian motion.
Then u is the unique smooth solution of the heat equation

Ou 1y“f t>0and z € R
— = ——— for and x :
Ot 2 Ox2

uw(0,z) = f(x), x€R.



By definition u(t, x) :

(y—=) d
u(t,xz) = /f(y)e_ ot y_.
27t
Because f is bounded for ¢ > 0 it holds :
ou _w=o)? [ (y —x)? 1
— (1 = 2t -
() [ e ( -
ou _w==2)?2 [ (y — ) dy
— (1 = 2t
0 (1, 2) [ rwe () =
9*u _w=o)? [ (y —x)? 1
@(tal’) = /f(y)e 2t ( -2 -7
Therefore for t > O :
ou 1 9%u
— = (¢

Moreover u(0, ) = f(x).




Heat equation

ou 1 0%u
B = 3902 for t > 0 and =z € R,
U(Oax) — f(x)a x€e R.

Such problem is called a evolution problem in time, as the solution at time ¢ > 0 is

determined from the values at time ¢ = 0, which is called initial condition.

We are interested in the numerical computation of the price function w.

We will consider a deterministic numerical method: the finite difference method.

The numerical procedure consists in two steps:
e Discretize the problem by using a consistent and stable approximation method.

e Implement a computational method to solve the discrete equation.



Finite Difference methods for the Heat equation

e We start by limiting the integration domain in space. The parabolic problem is

localized to a bounded domain in space €; =] — [, [;

e an approximate solution is sought by means of finite difference methods

involving discrete functions. This leads to a problem in finite dimension.

The basic idea of the finite difference scheme consists in approximating the

derivation operator by a discrete operator. For example

o (z) u(x + Ax) — 2u(x) + u(x — Ax)
Ax?

10

The parameter Az chosen arbitrarily small has a fixed non zero value.



Approximation

Consider a function u(zx) : [-1,1] = R, u € C*(=1,1).
Consider a uniform grid
r, = —l+1Ax for 0 << N + 1.

with Ax = N2—_|l_1
By Taylor expansion

1
u(z; + Ax) = u(x;) + Az’ (z;) + §Aaj2u”(xi +vAz), 0<v<l1

and
1 1
uw(x; + Azx) = u(x;) + A:I:u/(azi) + §A:1;2 //(ZBZ) + 6A:B u(s)(x@) —i— A:I;4fu,(4)(:13z + 1/+A:1:)

1 1
u(z; — Az) = u(x;) — A:cu/(xi) + §A:c2 N(:UZ) - EA:c3u(3)(:c ) —|— A:c4u( )(:IzZ + v, Ax)

with —1 < v, <0,0< v} <1.



Difference operators

Let us denote u; = u(x;),i = 1,.., N. Then

Ui4+1 — U4

u' () = N + O(Ax)
and
() + ) < B o (2)
Moreover
u'(x;) = ditl _Zl;;—'_ Doty O(Az?)
and P
I R



Localized problem

The problem is solved in a finite interval ; =] — [, [].
( Ou  10%u
e _ Y% %y _
5 = 3952 ort>0andx €] —1,1]
(1) \ u(t,%l) =0 for each t > 0.

| u(0,2) = f(a).

We impose Dirichlet boundary condition u(t,+l) =0 for each t > 0.



Finite difference

For the numerical solution of the problem by finite difference method, we introduce

a grid of mesh points
(tn, i) = (nAt, -l +iAzx), n=0,..M and i=0,...N+1

where

T 9
At= = Ap—= "
M OSTTNE

are mesh parameters which are thought of as tending to zero.

At is the time step and Ax is the space step.



We approximate % and 88—;.
0 t ) — u(tn, x;
KAV UL AL
ot At
and
0” " N U(tn, Tiv1) — 2u(tn, ;) + u(tn, Ti-1)
@u( n i) Az?

Let be u' an approximation of exact solution v at the node z; and at time
t, = nAt.

ur =2 u(ty, ;)

We obtain the following explicit scheme.

10



We have to solve directly at each time step

(Tl

Explicit scheme

pHlupjulg-2ululy _
—Af _ — 13 +1 A2 1, ’I/—].,..,N n—O,.
¢ up = f(x;), i=0,..,N+1
L uo =un,1 =0, Vn>0
We can write
n+1 A n n A n
’LL,L' = —U;—1 —|— (1 — )\)'U/,L —|— —’U/i_|_1
2 2
with N
t
A\ —
Ax?

11



Convergence of the Explicit scheme

We need that the solution of the scheme approximate the solution of the
corresponding PDE.

Moreover the approximation need improves as the grid spacings, Ax and At, tend

to zero.

A scheme that has such behaviour is called a convergent scheme.

e Probabilistic intepretation. The space step Ax and the time step At have
cannot be chosen indipendently one from the other. 0 < A < 1. Limit central

theorem

e The numerical analysis studies the convergence checking different properties.

Consistency, Stability

12



e Consistency The notion of consistency enables us to measure the error
produced by approximating the continuous operator by a discrete

operator.
It can be computed on the exact solution of the continuous problem,

thanks to a Taylor expansion.

e Stability The approximation is bounded.

13



Consistency

Definition We say that the scheme

ul ™t —up o lwdy — 2w 4w
At 2 Ax?
is consistent with the operator
o 10°
ot 2 0x?

if for any smooth function v = v(t, x) the difference

[v(t + At,z) —v(t,z) lo(t,z+ Az) —20(t,z) +v(t, = — Aac)} _((% 1 82?})(15 2)
At 2 Ax? ot 20x%2/""

goes to zero when Az, At — 0.

The difference is called the truncation error for the function v.

14



Accuracy

Definition The previous scheme is accurate of order q in time and p in space for the

operator

if for any smooth function v the truncation error goes to zero as

O(Az? + At?)

15



Consistency of the explicit scheme

Lemma The explicit scheme is consistent, accurate of order one in time and two in

space for the the heat equation operator u; — %um

Proof From Taylor expansion we have for each v € C**(R,, )

v(t+ At,x) —v(t,x) lo(t,z+ Azx) —2v(t,z) +v(t,z — Ax)

At 2 Ax?

1 At Ax?
ve(t, x)— §vm (t, :U)—|—7vtt (t+uve Aty x)— 42

with0<1, <1, -1<p; <0,0<vy <1.

(Vogaa (B, T+, AL)+Uzz20 (L, r4v,t Ax)),

16



Stability

But the consistency is not enough to let us prove the convergence of the scheme.

Another notion is required, that of stability.

Definition The scheme is said to be stable in the L°° norm iff there is a constant
K > 0 indipendent of At and Az such that for each n

[ oo < K[ f oo,

where ||u" || = SUPg<i<N+1 i’ |.

The idea is that there can be no growth over time.

17



Stability of the explicit scheme

Lemma The explicit scheme is stable in the L™ norm iff A = 2% < 1.

Az
Proof

n A n n A n
’U,i +1 p— 5’(1,7;_1 —|— (1 — )\)U;z —|— §U/z‘_|_1.

Under the hypothesis A < 1, the coefficients A and 1 — X\ of the linear combinations
are positive or vanishes.

So that

uf T < §|Ui—1\ + (1 = A)|u; |+ §|Ui+1|>

and

™ oo < flu”loc.

The stability result is given by recurrence.

18



Using apagoge, suppose now A > 1. Let us consider f; = a(—1).
LA A

u; = —a(=1)"" T (1 =Na(=1)"+Za(-1)" = (=1)'a(l=2)) = f;(1-2)).

L2 2

Because |1 — 2\| > 1, we have not stability in the L> norm

||u1||oo > || fll oo

19



Convergence theorem : Explicit Scheme

Theorem Let u the exact solution of the heat problem.
Suppose that u € C** (R4, ;).
Let u;" the numerical solution obtained with the explicit scheme. Suppose that

At
— <1
Ax? —

A

(i.e. the scheme is stable).
Then, for each T' > 0, it exists a constant Cr > 0 (depending only on u and T)
such that

sup  |uf — u(tn, xi)| < Cr(At + Az?).
0<i<N+1
0<n<M

We can conclude that the explicit scheme is convergent when A <1

At,lg:{;l—m (037;8;111\)7+1 i — u(tn, z:)] 0
0<n<M

20



Proof By Taylor expansion at point x; in space and t,, in time (Consistency

lemma) we have

u(tn—|—17 xz) — u(tna wz) _ lu(tna wi—i—l) — Q’LL(tn, QCZ) + u(t’m w’i—l) _

At 2 Az? ¢
with
At Ax?
6? — 7utt(tn+VtAt7xi)_4—383(uxxxx(tna $1+V;Aw)+uxxxx(tnawz—i_V;—Agj))a
with0 <1, <1, -1<v; <0,0<v <1.
Denote by
K= sup  (|Jua(t, )|+ |useea(t; 2)|).
—1<zx<[,0<t<T

When nAt < T we have

KAt KAz?
| < —— +
¢ 2 24

21



Let us introduce the numerical error 2z = ul* —u(t,,z;). It is easy to see that

1

n+1 n n n n
o —a lagyy =22 2y n

= —€. .

At 2 Ax? '

So that

A A
2t = 52;-”_1 + (1 =Nz + 52,?’“ — Ate.

Using the hypothesis that

At
A= —<1
Ax?2 —
we have ,
KAt KAx
7T < 2 oo + A= + =)

22



So that

o o K Ax?
12" oo < 112" 00 +At—(At+ ?)

and
n+1 n K 1
27 oo < [12" oo + AL (1+ ) (AL + Ag?).

Because ||2°]|oc = 0 (u? = f(x;)) we conclude that for each n < M
K 1
12" ][ oo < nAtE(l + E)(At + Ax?).

This gives the result

sup  |ul — ulty, ;)| < Cr(At + Ax?).
0<i<N+1
0<n<M

with Cr = £L(1+ 4).
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Fully Implicit scheme

The fully implicit scheme is given by:

( 1 +1 +1 +1
u?’_'_ —u? 1 ?—i—l 2“? tu :L 1 Z_ 1 N
At 2 Ax? ) I
0 .
y u; = f(xi), i=0,..,.N+1

We have to solve at each time step a linear system

24



Let us denove

U" = (uf,...,uy)
and :
(14X =2 0 0
-2 14X -3 0
B=1 0 —2 14X -3 0
\ 0 0 —3 1+ )

Then at each time step we have to solve :

BU™ =y,

25



B is invertible.

In fact, B is strictly diagonally dominant, i.e.

mn
|bu| >Z‘bw| :AZ', ’I::l,..,n
j=1
JFi
Therefore, the union of the disks |z — b;;| < A;, does not include the origin

z = 0 of the complex plan, and from the Gerschgorin Theorem, A = 0 is not

an eigenvalue of B, proving B is nonsingular.

26



Moreover, given the linear system Bx = g, then for each 7 :

A A
—5Ti-1t (1+ Az — 5 Zit1 = Gi-
If A >0 we have :
oo )\ o
ot Lol + Mzl
I+ A

so that [|7]|ec < [|g]|ee. Therefore B~ verify

IB™ glloc < llglloo-

We obtain a result of unconditionally stability.
For each Ax and for each At

U™ oo < U™ lco-

27



Convergence theorem : Fully Implicit Scheme

Theorem Let u the exact solution of the heat problem.
Suppose that u € C**(R, ).
Let u;" the numerical solution obtained with the fully implicit scheme. Then, for

each T' > 0, there exists a constant C'r > 0 (depending only on u and T') such that

sup  |ul — u(tn, xi)| < Cr(At + Az?).
0<i<N+1
0<n<M

The fully implicit scheme is unconditionally stable.

28



Proof By Taylor expansion at point z; in space and %, in time we have

U(tntr, i) = ultn, i) 1 ultngr, Tivr) = 2ultngr, 0) + ultngr, Ti1) _ p

At 2 Ax? ’
with N
n t _
€ = _7utt(tn+1 + vy At, ;)
AZCQ _ +
_ﬂ(uﬂmjxﬂc(tn—l—la L + V. AZC) + Ugprxx (tn—i—la Ly + V. AQC)),
with —1 <v, <0, -1<v; <0,0<y <1.
Denote by
K = sup  (Ju(t, 2)| + [tazza (t, )]).
—I<x<[,0<t<T

When nAt < T we have

KAt N K Ax?
2 24

el <

29



Let us introduce the numerical error 2 = ul’ — u(t,, ;). It is easy to see that

2Pl _gn 1 - 20 ]

A T3 A =
So that
Bz"th = 2" — Ate" !,
Using the fact that B is invertible and that
1B~ gl < llglloos
we have ,
2 oo < f12% oo + AL(ERE + 0T

30



As in the explicit case, this gives the result

sup  |ul — u(ty, ;)| < Cr(At + Az?).
0<i<N+1
0<n<M

with Cr = £L(1+ 5).

We can conclude that the fully implicit scheme is convergent

I ( n(t ~):Q
s\ Sup | fui = ultn, )]
0<n<M

31



Gauss factorization

We have to solve linear systems

Bx =g,

where x and g, are N dimensional vectors et B is tridiagonal matrix :

( bl C1 0 s 0 0 \
an b2 Co O st O
0 as bg C3 s 0
B =
0
0O 0 -+ an-1 bn-1 cN-1
\ 0 0 0 - an by )

Let be x = (xz')lgiSN and g = (gz‘)léz’SN-

32



We proceed by this way: the matrix B is reduced to a lower triangular

matrix with the pivot method.

Up Steps:
N =bn
gN = 9N

For i=N-—1,.1
by = bi — Cittit1/biyy

g,f = 0gi — Cz‘9£+1/b2+1

33



After this transformation we obtain the equivalent system B’x = ¢, with :

(o 0 0 -+ 0 0 )
ag by 0 0 .- 0
0 as bg 0 0
B =
0
0 0 anN-—-1 b?\f—l 0
\ 0 0 0 any Uy )

34



Finally, x is computed.

Downs Steps :

z1 = g1/b
For +:1=2,.., N,

L = (9{ — aixi—l)/b;‘

The complexity of the algorithm is linear.

35



Computational complexity

At each time time step
e the implicit scheme costs 6N multiplications et 3N additions.

e the explicit scheme with A = 1 costs 2N multiplications et /N additions.

But we need consider the stability condition for the explicit scheme.

In a implicit scheme we can choose arbitrarily M.

For example we choose l =1, T =1, N +1 = M = 200 so that Az = 0.01 and
At = 0.005

In a explicit scheme we cannot choose arbitrarily M because of the stability

condition.
For A = 1, At = Az® = 10™*, therefore M = int(Z;) = 10000!!.

36



Crank-Nicolson scheme

Using a 6-scheme in time, 0 < 6 < 1,we have

7 un—i—l_ n

n—+1 n—+1 n—+1
i u; (1 . 9)1 wit g —2ui tug 4+ 01 Uiy 22Uy Uy
At o 2 Ax? 2 Ax?

) i=L.N n=0.M-1
wy = f(z;), i=0,..,N+1.

uy =unyi1 =0, Vn>0

Va

When 6 = %, the theta-scheme is called the Crank-Nicolson scheme.

We have to solve at each time step the linear system

BU™! = AU",
with

37



and :

—
+ I
RO >

[ >~

> >
|
N[>~

p—t

=y O

38
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Consistency of the Crank Nicolson scheme

Lemma
The CN scheme is consistent, accurate of order two in space and two in time for the

1
_/u/:c:c.

the heat equation operator u; — 5

Proof Using Taylor expansion at point x; in space and ¢,, + % in time ...

39



L? Stability

Definition The scheme is said to be stable in the L? norm iff there is a constant
K > 0 indipendent of At and Ax such that for each n

[l < K[| f]2;

1/2
where ||u"|]|2 = (Aaz Zf\le(u?)Q) is the "discrete" L2 norm.

Lemma The Cranck-Nicolson scheme is unconditionally stable in L? norm. It holds

[u™ 2 < [lu” 2.

40



Convergence Theorem Let u the exact solution of the heat problem.
Suppose that u € C**(Ry, ).

Let u; the numerical solution obtained with the Crank Nicolson scheme. Then, for
each T > 0, there exists a constant C'r > 0 (depending only on u and T') such that
sup [|[u” — w(tn, z)||2 < Cr(AL* + Az?).

tn <T
Therefore

Ii no_ _
At,lArg;l—m tiung [|u U(tn, x)||2 =0

41



Option Pricing and Partial Differential equation
In the case of complete markets, one can prove by arbitrage technique that the fair
price at time 0 of an European option which guarantees the cash flow (ST) at

time 1" is by given
u(0,7) = Eq e u(SH)]
where S} is the price of the underlying asset at time ¢t with initial price Sp = x.

Now we use the Feynman Kac formula that give a relation between second order

partial differential equations and stochastic differential equation.

42



Feynam Kac Formula

Let (Xt):>0 be the solution of the stochastic differential equation

t t
Xt =at [ uls,x3ds+ [ o(xD)dB,
0 0

Define the second-order operator

o?(t,x) O*f
2 Ox?

of
ox

Af(z) = + u(t, )

with f any real-valued function of class C*(R).

Suppose that u is solution of the following backward partial differential equation

94 + Au—ru=0 in [0,T[xR
u(T,xz) =1(xr) inR

Then
u(0,x) = E[e_rTw(X%)}

43



Black-Scholes equation

We recall that the price of an European option in the Black and Scholes model

d—St = rdt + odW4
St

can be formulated in terms of the solution to a Partial Differential Equation.
After logarithmic transformation X; = log(.S;) the price at time ¢ of the option is

Vi = u(t, X+) where u solves the parabolic equation

u(t ) + 24 (t,x) + (r — %) 2% (t,x) — ru(t,z) = 0 in [0,T) x R,

44



Localization

Let be x = log(Sp). We start by limiting the integration domain in space: the
problem will be solved in a finite interval [x — [,z + [].
For the numerical solution of the problem by finite difference method, we introduce

a grid of mesh points
(tn,z;) = (NAt,x —l +iAx), n=0,..,M i=0,...N+1

where
T 21
At=—, Ar=——
M ST NFI
are mesh parameters which are thought of as tending to zero.

At is the time step and Ax is the space step.
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0-scheme

Using a 6-scheme in time, 0 < 6 < 1,we have

( 1 n+1 n+1 n—+1
u?+ —u; 4 90_2 ugy g —2ug tug + (1 . 9)0_2 Uy —2u T+
At 2 Ax2 2 Ax?
2 ul s —ul o Tl ntl
__ o~ 1+1 1—1 o __ o~ 1+1 1—1
0(r — 5 )55z + (1 =0)(r— %) Az

\ u; =(x;), i=0,..,N+1.
with Dirichlet boundary conditions

Vn=N-1,...,0 us =uny1 =0

46
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Explicit scheme

First, let us discuss the case 8 = 0.

We obtain
ui T = pruiy 4 paui + pauii
where
o2 L4 o o L
pr= AT(QAQ:Q Bl 2Aaz) pe=1-AT(r+ Aaz2) b3 = AT(QAQ:Q * 2A:U)
and u =r — %O‘Q.
This scheme is stable if AT < Az*

o24rAzx?:

47



Implicit scheme

In the case % < 0 < 1 we have to solve at each time step, a linear system of the type
TU" = Sy

where T and S are tridiagonal matrix of the type

(v a2 0 -« 0 0 )
a2 by co 0 e 0
0 as b3 c3 e 0
0
o 0 - am-1 bu-1 cm—
L0 0 0 av by

48



The coeflicient of T are given by

2 2 2

o m o
by =14 0AT e = —0AT(P—
) + (r+ AacQ) c (2Aac t 2Ax2

a; = QAT( H d

oAz  2Ax2 ):

The coefficient of S are given by

2 2 2

o)
ai = (1=0)AT (S5~ 57=)s bi=1=(1=OAT(+ 1 5), e =(1—-OAT(S—+ 57—

2Ax2  2Ax Ax? ):
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American option

The price of an American option u solve the following variational inequality

max (% + Au,yp —u) =0, (t,z) € [0, T[xR
u(T,x) =¢(x), x€&R.
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American options

Consider the solution of this system of inequalities

( Ou
§+Au§0, u>1, (t,z)€[0,T) xR
\ (%—I—Au) (Y —u)=0, (t,z)€[0,T)xR

| u(T,z) =9¢(z), z€R

Then w(0,z) = sup, 7. . E (e (Sr)).
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Barrier options

We consider the PDE in the logarithmic variable

(’9u+( 0'2)8u+0'282u 0
—_ r — — ru =
ot 2 " Ox 2 Ox2

u(0,2) = (K — e®)4,

together with the Dirichlet boundary conditions steming from the rebate on one (resp. both)
side(s). For example in the down-and-out case

u(t,log(D)) = R
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Rainbow options

We will consider American options written on two dividend-paying stocks. Let SZE (1 =1,2) be
the stock-price at time t of the stock ¢ which satisfies the following stochastic differential
equation:

ds? 2 -
Sit = (T—(Si)dt—l—ZO'ideg 1= 1,2
t j=1
Let oy =17 — 6; — a and z; = logs;, 1 = 1, 2.

After a standard logarlthmlc transformation (X}, X7) = (log(S}),log(S?)), the price at time 0
of an European option can be formulated in terms of the solution u(t, x1,x2) to the following
partial differential equation

Ou_

2 2
:1:2 85"32

2 3 2
u(T,ﬂcl,ﬂcg)zw(exl,e 2)

2 .
5 + a1 88331 + o —I—/0(71(7283381—83:2 —ru =0 in [O,T[><IR2
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Asian options

The price at time t of an Asian option is given by:
V(t,Se, Ay) = e " TTVE(g(ST, A7) | F).

The price of the Asian option V is solution of the following PDE:

02 2 52
{ S+ TS A rSEE + (S - A) G —rV =0,

V(T,S,A) =g(S,A).

The PDE is difficult to solve since the parabolic operator is degenerated in the A-variable.
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Lookback options

The price of an European Lookback option can be formulated, after a logarithm change of

variable, in terms of the solution u to the following PDE

2 52 :
3_%+%275+(r—q)g—g—ru:0 in [0, T[x{z < y}
u — (0 4n {x=uy}
u(T,z,y) = p(e”, e?)
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