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Estimating Sensitivities
We will see that in a idealized setting of continuous trading in a complete market, the payoff of a

contingent claim can be hedged through trading in underlying assets.

Implementation of the strategy requires knowledge of the pricing sensitivities.

The sensitivieties are very usefull in risk management.

Black-Scholes formula
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We will consider the delta ∆, gamma Γ, rho ρ, vega V ega and theta Θ.
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Delta

∆ =
∂C

∂x
= N(d1) > 0

The price of a Call option is a increasing function w.r.t. x the initial price.

Gamma
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x
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The price of a Call option is a convex function w.r.t. x the initial price.
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Rho

ρ =
∂C

∂r
= K(T − t)e

−r(T−t)
N(d2) > 0

The price of a Call option is a increasing function w.r.t. r.

Vega

V ega =
∂C

∂σ
= x

√

T − tN
′

(d1) > 0

The price of a Call option is a increasing function w.r.t. σ.

Theta

Θ =
∂C

∂τ
= −

xN ′(d1)σ

2
√
τ

− rKe
−rτ

N(d2) < 0

The price of a Call option is a decreasing function w.r.t. τ .
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Greeks : Monte Carlo Method

There are two ways to tackle this problem:

• finite difference approximation.

• the pathwise method.
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Finite difference approximation : Delta

Consider a function u(x) : R → R, u ∈ C4(R).

By Taylor expansion

u(x+ h) = u(x) + hu
′

(x) +
1

2
h
2
u
′′

(x+ νh), 0 ≤ ν ≤ 1

So we have

u
′
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u(x + h) − u(x)

h
+O(h)

Moreover and
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with −1 ≤ ν−

x
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x
≤ 1. Therefore

u
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2
)
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Finite difference approximation: Gamma

u(x + h) = u(x) + hu
′(x) +
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24
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4
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2
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Delta and Gamma approximations
We approximate

Delta

∆ =
∂E

[

ψ(Sx

T
)
]

∂x
≈

E

[

ψ(Sx+h

T
)
]

− E

[

ψ(Sx

T
)
]

h
=

E

[

ψ(Sx+h

T
) − ψ(Sx

T
)
]

h

or otherwise

∆ =
∂E
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ψ(Sx

T
)
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∂x
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E
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T
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T
)
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2h
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Γ =
∂2

E

[

ψ(Sx

T
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E
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T
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T
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T
)
]

h2
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function [Y] = Price(N,K,S0,INC,T,r,sigma)

mean_price=0;

mean_price_inc=0;

var_price=0;

drift=(r-0.5*sigma^2)*T;

S0_inc=S0*(1+INC) //S0 incremented

for i = 1:N

//g=rand(1,’normal’);

g=gaussian()

brownian=g*sqrt(T);

spot=S0*exp(drift+sigma*brownian);

price_sample=payoff_call(spot,K);

spot_inc=S0_inc*exp(drift+sigma*brownian);

price_sample_inc=payoff_call(spot_inc,K);
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mean_price=mean_price+price_sample;

var_price=var_price+price_sample^2;

mean_price_inc=mean_price_inc+price_sample_inc;

end

price=exp(-r*T)*mean_price/N;

error_price=sqrt(exp(-2*r*T)*var_price/N-price^2)/sqrt(N-1);

inf_price=price-1.96*error_price;

sup_price=price+1.96*error_price;

price_inc=exp(-r*T)*mean_price_inc/N;

delta=(price_inc-price)/(S0*INC)

//disp(’inf’,inf_price);

//disp(’sup’,sup_price);

Y(1) =inf_price;

Y(2)= price;

Y(3)= sup_price;

Y(4)= delta

endfunction;

10



Remark

• E
[

f(X)-g(X)
]

. It is better to perform:

• indipendent simulations I1
N

= 1
N

∑

N

i=1 f(Xi) − 1
N

∑

N

i=1 g(X
′

i
) with Xi and X′

i
i.i.d.

i = 1, .., N ?

• or common simulations I2
N

= 1
N

∑

N

i=1

[

f(Xi) − g(Xi)
]

?

• V ar
[

I1
N

]

= 1
N

[

V ar(f(X)) + V ar(g(X))
]

• V ar
[

I2
N

]

= 1
N

[

V ar(f(X)) + V ar(g(X)) − 2 cov(f(X), g(X))
]

• If f(X) and g(X) have positive correlation it is better to perform common simulations.

11



Pathwise method
Interchange of differentiation and expectation.
The pathways approach supposes that x 7→ Sx

t
(ω) is differentiable for almost every ω (and this is

the case) and the payoff function φ is differentiable also.

Then

∂xE
[

φ(Sx

t
)
]

= E

[

φ
′(Sx

t
)∂xS

x

t

]

.
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Black-Scholes equation
F.Black e M.Scholes The pricing of Options and Corporate Liabilites

Journal of Political Economy 73

Θ +
1

2
σ
2
x
2Γ + rx∆ − rC = 0.

Adding the boundary condition at maturity they obtains the Black-Scholes equation:

{

∂C

∂t
+ σ

2

2 x
2 ∂

2
C

∂x2 + rx ∂C

∂x
+ −rC = 0 in [0, T [×[0,+∞)

C(T, x) = ψ(x), x ∈ [0,+∞)

The Black-Scholes equation is a partial differential equation.

C(t, x), the price of the option at time t with initial underlying asset x, is solution of this PDE.

Idea of the proof: using portfolio with short position in the risk asset and long positions in the

Call options that replicates the risk-free asset on [0, T ].
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Risk-free replicating portfolio
At time

- we buy mt Call options with maturity T

- we sell mtnt stocks.

The value of the portfolio at time t is given by

V
0
t

= −mtCt +mtntSt

The portfolio is self-financing, so that:

dV
0
t

= −mtdCt +mtntdSt.

By Ito’s Lemma

dC(t, St) = µ(t, St)dt+
∂C

∂St

dSt,

with

µ(t, St) =
∂C

∂t
+
σ2

2
S

2
t

∂2C

∂S2
t

.
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dV
0
t

= −mtdCt +mtntdSt = −mt(µ(t, St)dt+
∂C

∂St

dSt) +mtntdSt =

−mtµ(t, St)dt+ (mtnt −mt

∂C

∂St

)dSt.

In order to obtain a risk-free portfolio we need

nt =
∂C

∂St

.

The arbitrage free hyphotesis says us that (V 0
t

= S0
t
)

dV
0
t
=rV 0

t
dt= −mtµ(t, St)dt.

dV
0
t
=rV

0
t
dt = r(−mtCt +mt

∂C

∂St

St)dt = rmt(
∂C

∂St

St − Ct)dt= −mtµ(t, St)dt.

Then

r(
∂C

∂St

St − Ct) = −µ(t, St),

that provides the Black Scholes equation

r(
∂C

∂St

St − Ct) = −(
∂C

∂t
+
σ2

2
S

2
t

∂2C

∂S2
t

).
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The Black Scholes equation

∂C

∂t
+
σ2

2
S

2
t

∂2C

∂S2
t

+ rSt

∂C

∂St

− rCt = 0

We have to add the following terminal condition C(T, ST ) = ψ(ST ).

Moreover

mt =
V 0
t

∂C

∂St
St − Ct
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Dynamic Delta
We want to replicate the option on [0, T ] using risk asset St and risk-free asset S0

t
.

We construct a portfolio

Vt = α(t, St)St + γ(t, St)S
0
t

that equals Ct.

In order to achieve a perfect replication we need

-

α(t, St) = nt =
dC(t, St)

dSt

= N(d1),

unit of risk asset St

-

γ(t, St) = −
1

mt

=
(

C(t, St) − St

dC(t, St)

dSt

) 1

S0
t

,

unit of risk-free asset S0
t

At maturity, we will have

VT = (ST −K)+.
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Proof
The value of the risk-free portfolio at time t is given by:

V
0
t

= −mtCt +mtntSt=S
0
t
.

We replicate the options with this portfolio

Vt = αtSt + γtS
0
t
=Ct=ntSt −

S0
t

mt

.
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Discrete Dynamic Hedging

Osservazione The Black-Scholes model is a complet market: every contigent claim with payoff

G = f(ST ) can be replicated perfectly with a self-financing portfolio.

Theoretically the risk is exactly zero.

The Black-Scholes analysis requires continuous hedging, which is possible in theory but

impossible in practice.

The simpliest model for discrete hedging is to rehedge at fixed intervals of time ∆T = T

N
; a

strategy commonly used with ∆T ranging from one day to one week.

So we will have errors in following a pure Black-Scholes hedging strategy in discrete time.
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Dynamic hedging algorithm

Start t0 = 0, S0 = x,S0
0 = 1,∆T = T

N

V0 = C(0, T,K, r, σ, x)

α0 = N(d1(S0)), γ0 =
(

V0 − S0α0

)

1
S0
0
; β0 = V0 − S0α0

for k = 1, . . . , N − 1

BEGIN;

tk = tk−1 +∆T ;

simulation of g ∼ N(0, 1); Sk = Sk−1e
(µ− 1

2
σ2)∆T+σg

√

∆T ;

S0
k
= S0

k−1e
r∆T ;

Vk = αk−1Sk + γk−1S
0
k
; Vk = αk−1Sk + βk−1e

r∆T

rebalancing the portfolio;

αk = N(d1(Sk)); γk =
(

Vk − Skαk

)

1
S0
k

; βk = Vk − Skαk

END;

SN = SN−1e
(µ− 1

2
σ2)∆T+σg

√

∆T ;

S0
N = S0

N−1e
r∆T ;

VN = αN−1SN + γN−1S
0
N ; VN = αN−1SN + βN−1e

r∆T
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Portfolio insurance
We want to obtain the quantity

max(K,ST )

It is easy to show that

max(K,ST ) = (K − ST )+ + ST

The sum

Vt + St = α(t, St)St + γ(t, St)S
0
t
+ St

provides us a portfolio with final value max(K,ST ) at maturity.

21


