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Estimating Sensitivities
We will see that in a idealized setting of continuous trading in a complete market, the payoff of a
contingent claim can be hedged through trading in underlying assets.

Implementation of the strategy requires knowledge of the pricing sensitivities.
The sensitivieties are very usefull in risk management.

C =zN(d) — Ke "IN (dy)

2
log (£) + (r+ %) (T — 1)
dy = dy =dy —o\/T — ¢
: VT — & o

We will consider the delta A, gamma I', rho p, vega Vega and theta ©O.
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The price of a Call option is a increasing function w.r.t. x the initial price.
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The price of a Call option is a convex function w.r.t. x the initial price.



Rho
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The price of a Call option is a increasing function w.r.t. r.
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The price of a Call option is a increasing function w.r.t. o.
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The price of a Call option is a decreasing function w.r.t. 7.

rKe ""N(d2) <0



Greeks : Monte Carlo Method

There are two ways to tackle this problem:
e finite difference approximation.

e the pathwise method.



Finite difference approximation : Delta

Consider a function u(z) : R = R, u € C*(R).
By Taylor expansion

1
u(z + h) = u(x) + hu'(x) + Ehgu”(az +vh), 0<v<l1

So we have

Moreover and
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u(x — h) = u(x) — hu'(x) + §h2u (x) — gh3u(3)(x + v h)

with -1 <v_ <0,0< 1/2’ < 1. Therefore




Finite difference approximation: (Gamma
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Delta and Gamma approximations
We approximate
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function [Y] = Price(N,K,SO,INC,T,r,sigma)

mean_price=0;
mean_price_inc=0;

var_price=0;

drift=(r-0.5*sigma~2)*T;
SO_inc=S0*x(1+INC) //SO incremented

for i = 1:N

//g=rand (1, ’normal’) ;
g=gaussian()
brownian=g*sqrt (T) ;
spot=SO*exp(drift+sigma*brownian) ;
price_sample=payoff_call(spot,K);

spot_inc=SO0_inc*exp(drift+sigma*brownian) ;
price_sample_inc=payoff_call(spot_inc,K);



mean_price=mean_price+price_sample;
var_price=var_pricet+price_sample~2;

mean_price_inc=mean_price_inc+price_sample_inc;

end

price=exp(-r*T)*mean_price/N;
error_price=sqrt(exp(-2*r*T)*var_price/N-price~2)/sqrt (N-1);
inf_price=price-1.96*error_price;
sup_price=price+l1.96*error_price;

price_inc=exp(-r*T)*mean_price_inc/N;
delta=(price_inc-price)/(S0*INC)
//disp(’inf’,inf_price);
//disp(’sup’,sup_price);
Y(1) =inf_price;
Y(2)= price;
Y(3)= sup_price;
Y(4)= delta

endfunction;
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Remark

° E[f(X)-g(X)]. It is better to perform:

e indipendent simulations Iy = & >°iv f(X;) — & 0w, g(X]) with X; and X i.i.d.
i=1,..,N?

e or common simulations Iy = & SN, [f(Xz) — g(Xi)}?
o Var[I}] = & [Var(f(X) + Var(g(x))]
o« Var[IZ] = % |Var(f(X)) + Var(g(X)) — 2 cov(f(X), g(X))]

e If f(X) and g(X) have positive correlation it is better to perform common simulations.
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Pathwise method

Interchange of differentiation and expectation.

The pathways approach supposes that x — S} (w) is differentiable for almost every w (and this is
the case) and the payoff function ¢ is differentiable also.

Then

0.E[6(57)| =E[¢'(57)0.57].
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Black-Scholes equation
F.Black e M.Scholes THE PRICING OF OPTIONS AND CORPORATE LIABILITES
Journal of Political Economy 73

1 5 9 .
@—}—50 ' +rxzA —rC = 0.

Adding the boundary condition at maturity they obtains the Black-Scholes equation:

Ox

{ 9 + 22 022°¢ 4 rz9C 4 —rC =0 in [0, T[x[0, +00)
C(T,q;):zp(:c), x € [0,+00)

The Black-Scholes equation is a partial differential equation.

C(t,x), the price of the option at time ¢ with initial underlying asset x, is solution of this PDE.

: using portfolio with short position in the risk asset and long positions in the

Call options that replicates the risk-free asset on [0, T'].
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Risk-free replicating portfolio
At time

we buy m; Call options with maturity T
we sell myn; stocks.

The value of the portfolio at time t is given by
Vto = —mCy + mine St
The portfolio is self-financing, so that:
AV = —mdCy + myn.dS;.

By Ito’s Lemma
oC
dC(t, St) = ,LL(t, St)dt -+ —dSt,
0St
with
oC 2 ,0%°C
+ 2522 =
ot 2 " 9S?

M(t? St) -
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0 oC
dV, = —mdCy + mindSty = —my(u(t, Sy)dt + ——dS;) + myndS; =

0S¢
oC
—mt,u(t, St)dt + (mtnt — MM )dSt
0S4
In order to obtain a risk-free portfolio we need
oC
ny = .
0St

The arbitrage free hyphotesis says us that (VtO = Sg)

AV =rV2dt= — mqu(t, Sy )dt.

0 0 oC oC
d‘/t th dt = r(—tht —|— mt—St)dt = rmt(—St — Ct)dt: — mt,u(t, St)dt
8St aSt
Then
oC
— St — Ct) = —pu(t, St),
7( 85, t t) u(t, St)
that provides the Black Scholes equation
oC oC o2 ,0%C
T( St — Ct) = —( —|— S )

0, ot 2 ' 9S?
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The Black Scholes equation
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We have to add the following terminal condition C(7T, St) = ¥ (ST).

Moreover
0
Vi
aoC
8St St - Ct

me =
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Dynamic Delta
We want to replicate the option on [0, T'] using risk asset S; and risk-free asset Sg.

We construct a portfolio

Vi = a(t, St)St + (¢, S¢) S,

that equals C}.
In order to achieve a perfect replication we need

dC(t, Sy)
t,St) = = ——= = N(d1),
a(t, $1) = m = 2= = N(dy)
unit of risk asset S;
' 1 dC(t, S¢)\ 1
t,S;) = —— = (C(t,Sy) — S ,
188 = = = (G S = Se— 22 ) o

unit of risk-free asset Sg

At maturity, we will have
Vr = (ST — K)_|_.
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Proof

The value of the portfolio at time t is given by:

Vto = —th’t + mtntSt S

We replicate the options with this portfolio

0

t -

Vi = oSt -l-’YtSS:Ct neSe — —.
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Discrete Dynamic Hedging

The Black-Scholes model is a complet market: every contigent claim with payoff
G = f(St) can be replicated perfectly with a self-financing portfolio.
Theoretically the risk is exactly zero.
The Black-Scholes analysis requires continuous hedging, which is possible in theory but
impossible in practice.

The simpliest model for discrete hedging is to rehedge at fixed intervals of time AT = %; a

strategy commonly used with AT ranging from one day to one week.

So we will have errors in following a pure Black-Scholes hedging strategy in discrete time.
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Dynamic hedging algorithm

Start tg =0, Sg = :13,58 = 1,AT = %
Vo=C(0,T,K,r,o,x)
a0 = N(d1(S0)), 70 = (Vb — Socw ) o
for k=1,...,N —1
BEGIN:
ty = tp—1 + AT,
simulation of g ~ N(0,1); Sk = Sk_le(u—%ag)AT—i—ag\/ﬁ;
59— 59_,erS7
Vi = a—1Sk + Yk—15%;
rebalancing the portfolio;
o = N(di () v = (Vi — Sk ) o
END:; )

Y

SN = SN_le(,u—%ag)AT—l—ag\/AT;
0 _ qO rAT.

Sy = Sn_1€ 7

VN =an-1SN +7v-15%;
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Portfolio insurance
We want to obtain the quantity

max (K, St)

It is easy to show that
max(K,St) = (K —St)+ + St

The sum
Vi + S = a(t, S¢)S: + ~v(t, S¢Sy + Si

provides us a portfolio with final value max(K, St) at maturity.
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