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American options in a unidimensional model

The stock price process satisfies the following SDE:

dSt

St

= rdt+ σdBt

The value at time t = 0 of an American Put option on the risky underlying, with

maturity T and payoff function ψ(x) = (K − x)+, is, in the connection with

Optimal Stopping Theory, given by:

v(0, s0) = sup
τ∈T0,T

EQ

[

e
−rτ

ψ(Sτ )
]

where T0,T is the set of all stopping times with values in [0, T ].

Since it is American, plain Monte Carlo simulation is not feasible.
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Longstaff–Schwartz Method

Idea : Approximation of Conditional Continuation values with regression

• Discrete time steps. Bermudan option.

• Monte Carlo simulation of the underlying asset during the lifetime of the

option.

• Early exercise backwards in time: at each time steps comparison between

the exercise value and the continuation value computed using a

regression.

• discounting cashflows and averaging the paths.
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Bermudan Options

- Exercise times t0 = 0 < t1 < . . . < tN = T

Price in t = 0

P0 = sup
τ∈T0,T

E

[

e−rτψ(Sτ )
]

Backward Dynamic Programming for P






PN := ψ (StN )

Pj := max
(

ψ
(

Stj
)

,E
[

e−r(tj+1−tj)Pj+1|Ftj

])

0 ≤ j ≤ N − 1

where

Pj = P (tj , Stj ) = sup
τ∈Ttj,T

E

[

e−r(τ−tj)ψ(Sτ )|Ftj

]
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Optimal Stopping Time

τ∗0 := min {tk ≥ 0;ψ (Stk) = Pk}

P0 = E

[

e−rτ
∗
0 ψ

(

Sτ∗
0

)

]

Moreover

τ∗j := min {tk ≥ tj ;ψ (Stk) = Pk}

Pj = E

[

e−r(τ
∗
j −tj)ψ

(

Sτ∗
j

)

|Ftj

]
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Backward Dynamic Programming for τ∗







τ∗N := T

τ∗j := tj1Aj
+ τ∗j+11Ac

j
0 ≤ j ≤ N − 1

where

Aj :=
{

ψ
(

Stj
)

≥ Pj
}

We can eliminate the dependency on P thanks to

ψ
(

Stj

)

≥ Pj ⇐⇒ ψ
(

Stj

)

≥ E

[

e
−r(tj+1−tj)Pj+1 |Ftj

]

⇐⇒

ψ
(

Stj

)

≥ E

[

e
−r(tj+1−tj )

E
[

e
−r(τ∗

j+1−tj+1)
ψ
(

Sτ∗
j+1

)

|Ftj+1

]

|Ftj

]

Therefore

Aj :=
{

ψ
(

Stj

)

≥ E

[

e
−r(τ∗

j+1−tj)ψ
(

Sτ∗
j+1

)

|Ftj

]

=

{

ψ
(

Stj

)

≥ E

[

e
−r(τ∗

j+1−tj)ψ
(

Sτ∗
j+1

)

|Stj

]}
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So we use the backward procedure






τ∗N := T

τ∗j := tj1Aj
+ τ∗j+11A

c
j

0 ≤ j ≤ N − 1

where

Aj :=
{

ψ
(

Stj
)

≥ E

[

e−r(τ
∗
j+1−tj)ψ

(

Sτ∗
j+1

)

|Stj

]}

We can consider only in-the-money paths in the estimation

It is useless to compute

E

[

e−r(τ
∗
j+1−tj )ψ

(

Sτ∗
j+1

)

|Stj

]

when ψ
(

Stj
)

= 0.
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Longstaff–Schwartz Method

Compute τ∗0

P0 = E

[

e−rτ
∗
0 ψ

(

Sτ∗
0

)

]

using the backward induction on the optimal stopping times.

Approximation of the conditional expectations

E

[

e−r(τ
∗
j+1−tj )ψ

(

Sτ∗
j+1

)

|Stj

]

using regressions

Let

Yj = e−r(τ
∗
j+1−tj )ψ

(

Sτ∗
j+1

)

We need compute

E

[

Yj |Stj

]
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The regression method

E

[

Yj |Stj

]

can be expressed as φj(Stj ), where φj minimizes

E

[

(

Yj − f(Stj )
)2

]

among all functions f such that E

[

(f(Stj ))
2
]

< +∞.

Since L2 is a Hilbert space the conditional expectation can be represented as

a linear function of a total basis of L2

φj =
∑

l≥1

αlgl
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Algorithm in finite dimensional space

1. Initialize τ∗N := T

2. Define αj = (αjl , 1 ≤ l ≤ k) as the vector wich minimizes

E

[(

e−r(τ
∗
j+1−tj )ψ

(

Sτ∗
j+1

)

− (αj , g)(Stj )
)2 ]

(αj , g) =
∑

1≤l≤k αlgl

3. Define

τ∗j := tj1Aj
+ τ∗j+11Ac

j
0 ≤ j ≤ N − 1

Aj :=
{

ψ
(

Stj
)

≥ (αj , g)(Stj )
}



Empirical version

1. Initialize τm
N := T

2. Define α
j
M

= (αj

l
, 1 ≤ l ≤ k) as the vector wich minimizes

1

M

∑

1≤m≤M

(

e
−r(τm

j+1−tj )ψ

(

S
m
τm
j+1

)

− (αj
, g)(Sm

tj
)
)2

3. Define for each trajectory m

τ
m
j := tj1Aj

+ τ
m
j+11Ac

j
0 ≤ j ≤ N − 1.

Aj :=
{

ψ
(

Sm
tj

)

≥ (αj
M
, g)(Sm

tj
)
}

Estimator of the price is given by

P0 = max



ψ (x0) ,
1

M

∑

1≤m≤M

e
−rτm

1 ψ
(

S
m
τm
1

)



 .



Remarks

- The minimization problem is standard least-squares approximation

problem.

- Choiche of Basis Functions (Canonical, Legendre, Laguerre).

– Canonical basis functions: g1(x) = 1, g2(x) = x, g3(x) = x2,

gn(x) = xn

– Laguerre basis functions: g1(x) = e−x
2

, g2(x) = e−x
2

(1− x),

g3(x) = e−x
2

(1− 2x+ x2

2 ), gn+1(x) = e−
x
2
ex

n!
dn

dxn (x
ne−x)

- We can restrict outself in the regression to trajectories such that
{

ψ
(

Stj
)

> 0
}
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Numerical example

- American Put option on one asset

- The maturity is T = 3 years and the strike K = 1.1

- r = 0.06. We have the discount factors e−r = 0.94176 and e−2r = 0.88692

- We need to compute at each time step tj = 1, 2 the conditional

expectations

E

[

Yj |Stj

]

,

where Yj = e−r(τ
∗
j+1−tj )ψ

(

Sτ∗
j+1

)

is the discounted payoff.

- We regress

Yj

on the canonical basis functions 1, Sj , S
2
j

min
α

j
1,α

j
2,α

j
3

E

{

[

Yj − (αj1 + α
j
2Sj + α

j
3S

2
j )
]2
}
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Final Remarks

- We can use backward approach which uses Brownian bridge law

B0 = 0 and Btj+1 = b. Then

Btj ∼ N

(

tj

tj+1
b,

tj

tj+1
(tj+1 − tj)

)

.

- The Longstaff-Schwartz method is very useful with several underlying

assets.

- A rigorous proof of the convergence of the algorithm is given by Clement,

Lamberton, Protter (Finance and Stochastics 2002).

12


