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European options in Black-Scholes continuous model
Problem: compute European Put options

P = e−rT
EQ

[

(K − ST )+
]

,

where (St)t≥0 is a geometric brownian motion.

dSt

St

= rdt+ σdBt, S0 = x,

ST = xe(r−
1
2
σ2)T+σBT .
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G.M.B. and random walk
Let S0≤t≤T a g.b.m. Then :

Proposition

Let (Xi, i ≥ 1) be a sequence of i.i.d. random variables, P(Xi = u) = q and P(Xi = d) = 1 − q.

Let (Sn)n≥0 be the CRR random walk with S0 = x and

Sn+1 = SnXn+1.

Let ∆T = T/N be the time discretization step,

u = e
σ
√

∆T
,

d = e
−σ

√
∆T

,

q =
er∆T − d

u− d
.

Then SN converges in law to ST .
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European price with CRR random walk
We can approximate

P = e
−rT

EQ

[

(K − ST )+
]

by

e−rT
Eq

[

(K − SN )+
]

.

To compute e−rT
Eq

[

f(SN )
]

we have to solve:







u(N∆T, x) = f(x),

u(n∆T, x) = e−r∆T
[

qu
(

(n+ 1)∆T, xu
)

+ (1 − q)u
(

(n+ 1)∆T, xd
)]

.

For the put option, f(SN ) = (K − SN )+ we obtain the following algorithm :
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CRR Algorithm for put option in BS model

/*Up-Down factors*/

h=T/N;

u=exp(sigma*sqrt(h));

d=1./u;

/*Risk neutral probability*/

pu=(exp(r*h)-d)/(u-d);

pd=1-pu;

/* Condition at maturity */

for (j=0;j<=N;j++)

P[j]=MAX(0.,K-x*pow(u,N-j)*pow(d,j));

/* Backward induction */

for (i=1;i<=N;i++)

for (j=0;j<=N-i;j++)

P[j]=exp(-r*h)*(pu*P[j]+pd*P[j+1]);

/* E(f(S_N)|S_0=x) is given in P[0] */
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Proof Let us consider S0 = 1 and λ ∈ R

Eq [exp (iλ lnSN )]

= Eq

[

exp

(

iλ ln

N−1
∏

n=0

Sn+1

Sn

)]

= Eq

[

exp

(

iλ ln
S1

S0

)]N

=
(

q exp
(

iλσ
√
∆T
)

+ (1 − q) exp
(

−iλσ
√
∆T
))N

and since q = er∆T −d
u−d ∼ 1

2 +

(

r−σ2

2

)

2σ

√
∆T .

Eq [exp (iλ lnSN )] ∼
(

1 +
[

iλ
(

r − σ2

2

)

− λ
2 σ2

2

]

T
N

)N

→ exp
([

iλ
(

r − σ2

2

)

− λ2 σ2

2

]

T
)

= EQ

[

exp
(

iλ
((

r − σ2

2

)

T + σBT

))]

= EQ [exp (iλ lnST )]

SN → ST

in law for N → ∞.
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Local consistency
Kushner’s theorem says that the local consistency conditions, that is the matching at the first

order of the first and second moments of the logarithmic increments of the approximating chain

with those of the continuous-time limit grant the convergence of the expectations of smooth

functionals.

DISCRETE CONTINUOS

S(n+1)∆T = Sn∆TX(n+1)∆T dSt = Stdt+ σStdBt

qu + (1 − q)d = Eq [
S(n+1)∆T

Sn∆T

] ≈ EQ[
St+∆t

St

] = e
r∆T

,

qu
2
+ (1 − q)d

2
= Eq [(

S(n+1)∆T

Sn∆T

)
2
] ≈ EQ[(

St+∆t

St

)
2
] = e

2r∆t+σ2∆t
.
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Option pricing in continuous models
Let b : R → R and σ : R → R two functions such that :

|b(x) − b(y)| ≤ K|x− y| and |σ(x) − σ(y)| ≤ K|x− y|.

Let (Wt, t ≥ 0) a standard Brownian motion w.r.t (Ft, t ≥ 0). We will denote (St, t ≥ 0) the

diffusion which is the unique solution of :

dSt = b(St)dt+ σ(St)dWt, S0 = x0.

The price of an European option is given by :

Vt = E

(

e−r(T−t)f(ST )|Ft

)

,

The price of an American option is given by :

Vt = sup
τ,Fts.t.,t≤τ≤T

E

(

e−r(τ−t)f(Sτ )|Ft

)

,
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Approximation results
We now consider a sequence of Markov chain (Ŝ(N)

n , n ≥ 0) with transition matrix P (N)(x, y)

such that Ŝ
(N)
0 = x0. Let k = T/N and let:

S
(N)
t = Ŝ

(N)

[t/k]
.

We will give sufficient conditions implying that (S
(N)
t )0≤t≤T converges in law to (St)0≤t≤T .

The basic idea is that we need to satisfy a consistency conditions for the first two moments.
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Hypothesis (H)
(H0) P (N)(x, y) = 0 except for a finite number of values. Moreover, P (N)(x, y) = 0, if

|x− y| > A, for A > 0.

(H1) If :

bN (x) =
1

k

∑

y

P (N)(x, y)(y − x),

then for all R > 0, limN→+∞ sup|x|≤R |bN (x) − b(x)| = 0.

(H2) If :

aN (x) =
1

k

∑

y

P (N)(x, y)(y − x)2,

and if : then for all R > 0, limN→+∞ sup|x|≤R |aN (x) − σ2(x)| = 0.

(H3) for all ǫ > 0 and for all R :

lim
N→+∞

sup
|x|≤R

1

k

∑

y,|y−x|>ǫ

P
(N)

(x, y) = 0.
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Convergence results in the European case
Theorem Under Hypothesis (H), for all t ≤ T , S

(N)
t converges in law to St when N tends to

infinity.

Corollary Let f be a continous and bounded function. Let P (N) be a transition probability

satisfying Hypothesis (H). Then :

E

(

e−rT f(ST )
)

= lim
N→+∞

E

(

e−rT f(S
(N)
T )

)

.

Moreover :

E

(

e
−rT

f(S
(N)
T )

)

= E

(

e
−rT

f(S
(N)
N )

)

= ūe(0, x0),

ū(n, x0) can be computed solving

ūe(N, x) = f(x)

ūe(n, x) = e−rk∑

y P
(N)(x, y)ūe(n+ 1, y).
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Convergence results in the American case
Theorem Under Hypothesis (H)

supτ,Ft−s.t.,τ≤T E
(

e−rτf(Sτ )
)

= limN→+∞ sup
T ,G(N)

n −s.t.,T ≤N
E

(

e−rkT f(S(N)
T )

)

,

with G(N)
n = σ(S

(N)
1 , . . . , S(N)

n ).

Corollary Let f be a continous and bounded function. Let P (N) be a transition probability

satisfying Hypothesis (H). Then :

sup
τ,Ft−s.t.,τ≤T

E

(

e
−rτ

f(Sτ )
)

= lim
N→+∞

sup

T ,G(N)
n −s.t.,T ≤N

E

(

e
−rkT

f(S
(N)
T )

)

= ūa(0, x0).

ū(n, x0) can be computed solving

ūa(N, x) = f(x)

ūa(n, x) = sup
(

e−rk∑

y P
(N)(x, y)ūa(n+ 1, y), f(x)

)

.
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G.B.M. and Kamrad Ritchken tree
Kamrad and Ritchken choose to take a symmetric 3-points approximation to log

(

Sn∆T
S0

)

(1) logS(n+1)∆T =























log Sn∆T + log u with pu

log Sn∆T with pm

log Sn∆T + log d with pd

In order to obtain the convergence, they match the 2 first moments of log
(

Sn∆T
S0

)

.

By replacing log u by λσ
√
∆T this leads to

pu =
1

2λ2
+

(

r − σ2

2

)√
∆T

2λσ
,

pm = 1 − 1

λ2
,

pd =
1

2λ2
−

(

r − σ2

2

)√
∆T

2λσ
.

The parameter λ appears as a free parameter of the geometry of the tree, which may be useful

for some purposes. It is called the stretch parameter. The value λ = 1.22474 which corresponds

to pm = 1
3 is reported to be a good choice for an at the money Call (or Put) option.
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Trinomial algorithm of Kamrad Ritchen
To compute e−rT

Eq

[

f(SN )
]

, one has to solve :







u(N∆T, x) = f(x),

u(n∆T, x) = e
−r∆T

[

puu
(

(n + 1)∆T, xu
)

+ pmu
(

(n+ 1)∆T, x
)

+ pdu
(

(n+ 1)∆T, xd
)]

.

In particular if, f(SN ) = (K − SN )+ then :
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Trinomial model of Kamrad Ritchken

/*Up-Down factors*/

h=T/N;

lambda=1.22474;

u=exp(lambda*sigma*sqrt(h));

d=1./u;

/*Probabilities*/

z=r-SQR(sigma)/2.;

pu=(1./(2.*SQR(lambda))+z*sqrt(h)/(2.*lambda*sigma));

pm=(1.-1./SQR(lambda));

pd=1./(2.*SQR(lambda))-z*sqrt(h)/(2.*lambda*sigma));

/* Condition at maturiy */

for (j=0;j<=2*N;j++)

P[j]=MAX(0.,K-x*pow(u,N-j) induction */

for (i=1;i<=N;i++)

for (j=0;j<=2*N-2*i;j++)

P[j]=exp(-r*k)*(pu*P[j]+pm*P[j+1]+pd*P[j+2]);

/* E(f(S_N)) is given in P[0] */
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American option
The value at time t = 0 of an American Put option on the risky underlying, with maturity T and

payoff function ψ(x) = (K − x)+, is, in the connection with Optimal Stopping Theory, given by:

v(0, s0) = sup
τ∈T0,T

EQ

(

e
−rτ

ψ(Sτ )
)

where T0,T is the set of all stopping times with values in [0, T ].
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CRR algorithm

u = eσ
√

∆T

d = e
−σ

√
∆T

q =
er∆T − d

u− d

The price of an American out v0 is obtained solving:







v(N, x) = (K − x)+,

v(n, x) = MAX
(

e
−r∆T

qv(n + 1, xu) + (1 − q)v(n + 1, xd), (K − x)+
)

.
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Binomial algorithm
American Put option

/*Up-Down factors*/

h=T/N;

u=exp(sigma*sqrt(h));

d=1./u;

/*Risk neutral probability*/

pu=(exp(r*h)-d)/(u-d);

pd=1-pu;

/*Intrinsic values*/

for (j=0;j<=2*N;j++)

InV[j]=max(0.,K-xpow(u,N-j));

/*Terminal condition*/

for (j=0;j<=N;j++)

P[j]=InV[2*j];

/*Dynamic programming*/

for (i=1;i<=N;i++)

for (j=0;j<=N-i;j++)

P[j]=MAX(exp(-r*k)*(pu*P[j]+pd*P[j+1]),InV[i+2*j]);

/* Price in P[0] */
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Finite difference approximation

Consider a function u(x) : R → R, u ∈ C4(R).

By Taylor expansion

u(x+ h) = u(x) + hu
′
(x) +

1

2
h
2
u
′′
(x+ νh), 0 ≤ ν ≤ 1

So we have

u
′
(x) =

u(x + h) − u(x)

h
+O(h)
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Finite difference approximation

u(x+ h) = u(x) + hu′(x) +
1

2
∆x2u′′(x) +

1

6
h3u(3)(x) +

1

24
∆x4u(4)(x+ ν+h)

u(x− h) = u(x) − hu
′
(x) +

1

2
h
2
u
′′
(x) − 1

6
h
3
u
(3)

(x) +
1

24
h
4
u
(4)

(x+ ν
−
h)

u
′′
(x) =

u(x + h) − 2u(x) + u(x− h)

h2
+O(h

2
)
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Greeks
Delta

∆ =
∂C

∂x
=
v(∆T, xu) − v(∆T, xd)

xu− xd
.

Gamma

In order to have second order accuracy in space, for ∂2v
∂x2 computation, we have to modify the

finite difference stencils with

2

hi + hi+1

(
ṽ(xi+1) − ṽ(xi)

hi+1

− ṽ(xi) − ṽ(xi−1)

hi

).

Let h = 1
2 (xu

2 − xd2). Then

Γ =
∂2C

∂x2
=

(

v(2∆T,xu2)−v(2∆T,x)

)

(

xu2−x

) −

(

v(2∆T,x)−v(2∆T,xd2)

)

(

x−xd2

)

h
.
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Cox-Ross-Rubinstein Tree
The price at time 0 v(0, s0) of the European (resp. American) Put option can be computed by

the following backward dynamic programming equations







vN (N, x) = (K − x)+

vN (n, x) = max
(

ψ(x), e
−r∆T

[

puvN (n+ 1, xu) + (1 − pu)vN (n + 1, xd)
])

,

where ψ ≡ 0 (resp. ψ(x) = (K − x)+).

The Cox-Ross-Rubinstein tree (CRR) corresponds to the choice u = 1
d = eσ

√
∆T . This leads to

pu = er∆T −e−σ
√

∆T

eσ
√

∆T −e−σ
√

∆T
.

The Cox-Ross-Rubinstein tree satisfy local consistency conditions, that is the matching at the

first order of the first and second moments of the logarithmic increments of the approximating

chain with those of the continuous-time limit.
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Convergence results
The price may converge slowly or even oscillate significantly, especially for Barrier type option

(Boyle and Lau Journal of Derivatives 94).

Figlewsky and Gao (Journal of Financial Economics 99) identify two types of error:

• the distribution error. The distribution error arises from approximating the continuous

distribution with a discrete distribution;

• the nonlinearity error. The nonlinearity error occurs at certain price or time level.

The vanilla option has a critical point at maturity with the stock price equal to the stock

price.

For the continuous barrier options the critical price occurs along the barrier price.
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Asymptotics results for CRR
Diener-Diener(MF 2002)

P
CRR
N = PBS − Ke−rT

N
e
−

d22
2

√

2

π

[

κN (κN − 1)σ
√
T +D

]

+ O
(

1

N3/2

)

,

where

• D is a constant

• κN denotes the fractional part of
log( K

s0
)

2σ

√

N
T − N

2 .

In the at the money case i.e. that K = s0, then one has κN = 0, and then for N = 2m even, the

Strike K coincides with the (m+ 1)-th final node of the (CRR) tree, and one has

P
CRR
2m = PBS − DKe−rT

2m
e
−

d22
2

√

2

π
+ O

(

1

m3/2

)

.
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Richardson extrapolation

PCRR
2m = PBS − DKe−rT

2m
e−

d22
2

√

2

π
+ O

(

1

m3/2

)

.

In the approximation 2PCRR
4m − PCRR

2m of PBS obtained using Richardson extrapolation, the

term with order 1/N vanish.

As a consequence the rate of convergence of

2PCRR
4m − PCRR

2m

to

PBS

is

O
(

1

m3/2

)

which explains the good numerical behaviour of this approximation in at the money case.
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• The BIR method of Gaudenzi-Pressacco (DEF 2003), is Binomial Interpolated with

Richardson extrapolation. The logic of the BI approach then is to create a set of

computational options, each one with a computational Strike lying exactly on a final node

of the tree. The value of the option with the contractual Strike is then obtained by

interpolation of the values of the computational options. Furthermore, it is possible to

exploit the recovered regularity a two-points Richardson extrapolation : this leads to the

BIR method.

• The BBSR method introduced by Broadie and Detemple (RFS 96) replaces at any node of

the last but one time before maturity, the binomial continuation value with the

Black-Scholes European one.

• The Adaptive Mesh Model AMM introduced by Figlewski and Gao (JFE 99) resorts to

refining the grid around the strike and at maturity.
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MSM
Matching Moments and Strike

When N is even, if the Strike K is equal to one of the final nodes (s0e
(2k−N)σ

√
∆T )0≤k≤N of

the tree, then one has κN = 0 (so that the term with order 1/N vanish in Richardson

extrapolation).

This justifies our interest in trees such that the Strike coincides with one of the final nodes.

MSM is based on two matching conditions :

• Strike Condition : the Strike K is equal to one of the final nodes of the tree.

• Local Consistency Condition : the tree is consistent with the Black-Scholes model in

the limit of an infinite step number.
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Strike Matching

The Strike K is equal to one of the final nodes of the tree .

Instead of requiring u = 1
d as in the Cox-Rubinstein model, we propose in the MSM method to

ensure that the Strike K is the (k + 1)-th (with k ∈ {1, . . . , N − 1}) final node of the tree :

K = s0u
kdN−k

which also writes
1

N
log(

K

s0
) = q log u+ (1 − q) log d

where q = k
N .

Remark Degree of fredom of k choiche.
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Moments Matching : Local consistency condition

The two first moments matching conditions read

{

pu log u+ (1 − pu) log d = (r − 1
2σ

2)∆T

pu(log u)
2 + (1 − pu) (log d)

2 = σ2∆T.

Kushner’s theorem says that the local consistency conditions, that is the matching at the first

order of the first and second moments of the logarithmic increments of the approximating chain

with those of the continuous-time limit grants the convergence of the expectations of smooth

functionals.
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Linear System
We want to find (log u, log d, pu) with log u > log d and pu ∈]0, 1[ solving the following system of

equations with unknowns (x, y, p)















qx + (1 − q)y = α

px + (1 − p)y = β

px2 + (1 − p)y2 = γ

where α = 1
N log( K

s0
), β = (r − σ2

2 )∆T and γ = σ2∆T , q = k
N .
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For q = k/N with k ∈ {1, . . . , N − 1}, the solutions (pi, xi, yi)i∈{1,2} of the system provide two

trees :

• the first one with pu = p1, log u = x1 and log d = y1 is such that the (k+ 1)-th final node

s0u
kdN−k of the tree is equal to the Strike K,

• the second one with pu = 1 − p2, log u = y2 and log d = x2 is such that the (N − k)-th

final node s0u
N−kdk of the tree is equal to the Strike K.

When N is even and k = N/2, both trees are equal.

Remark The tree is recombining since u and d remain constant within the tree but not

symmetric .
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Tree MSM parameters
For any k ∈ {1, . . . , N − 1}, there is a unique MSM tree with N steps and parameters

(pu, log u, log d) (with pu ∈]0, 1[ and log u > log d) satisfying the two first moment matching

conditions and such that the strike K is equal to the (k + 1)-th final node of the tree :

K = s0u
kdN−k.



















pu =
(α−β)2+2q(γ−β2)−(α−β)

√
(α−β)2+4q(1−q)(γ−β2)

2((α−β)2+(γ−β2))

log u = α+ (1 − q) β−α
pu−q

log d = α− q β−α
pu−q

.

where


























q = k
N

α = 1
N log

(

K
s0

)

β =
(

r − σ2

2

)

T
N

γ = σ2 T
N

.
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Asymptotics results for MSM
Following Diener-Diener(MF 2002) results, we prove in the European case, when N is even and

k = N/2, as m tends to infinity,

P2m = PBS +
CP

m
+ O

(

1

m3/2

)

δ2m = δBS +
Cδ

m
+ O

(

1

m3/2

)

,

with CP = Ke−rT






ηN (−d2) +

e−
d22
2

√
2π

(

d31 + d2 − d32 − d1

8
+ ν − µ

)






,

and

with Cδ =
e−

d21
2

√
2π

(

d31 − d1

8
+ ν

)

.
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MSMR method
We have not been able to obtain asymptotic expansions for the price and delta of the American

Put Option in the MSM tree with 2m steps and k = m. Nevertheless, because of the expansions

obtained for the European Put option, we propose to use Richardson extrapolation even when

computing the price and the delta of the American Put. This leads to MSMR method:

Price

2P
A
4m − P

A
2m

Delta

2
vA4m (1, s0u4m) − vA4m (1, s0d4m)

s0 (u4m − d4m)
− vA2m(1, s0u2m) − vA2m(1, s0d2m)

s0(u2m − d2m)
.
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Numerical results
American Put Options in Black-Scholes Model

• We compare our algorithm MSMR with the procedures we have mentionned

(CRR,BIR,BBSR,AMM) for pricing and hedging American Put options in the

Black-Scholes model.

• A sample of 5.000 options was extracted randomly from a population whose parameters are

the ones used in Gaudenzi-Pressacco-Zanette-Ziani[04].

• Several options of the sample have been discarded for various reasons. 4.443 options

survived.

• For each option of the sample a neutral reliable price benchmark was computed as the CRR

at 96.000 steps.

• the errors for the whole sample are summarized by the Mean Relative Error (MRE) and by

the Squared Root of the Mean Quadratic Relative Error (RMSRE).
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Price

Figure 1: Price: speed-precision efficiency for tfhe 4.443 samples.
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Delta

Figure 2: Delta: speed-precision efficiency for the 4.443 samples.
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Chang Palmer method

• They use flexible binomial tree of Tian (99) A flexible binomial option

pricing model. The Journal of Future Markets 1999. u = eσ
√
∆T+λσ2∆T ,

d = e−σ
√
∆T+λσ2∆T choosing λ so that K = S0u

j0dn−j0 .

• The price of an Europen call option with the flexible binomial model

satisfied

Cn = CBS +
C1

n
+ o

(

1

n

)

.

• The price of an Europen digital option with the flexible binomial model

satisfied

Dn = e−rTN(d2) +
C2√
n
+O

(

1

n

)

.
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• They obtain a new binomial model the center binomial model which

permits to obtain convergence 1
n for the digital options.

• They choose λ so that K is the geometric average of S0u
j0dn−j0 and

S0u
j0−1dn−j0+1.

• The intuitive reason for the better convergence for the digital options is

that the payoff function for a digital option is that the payoff function

has a jump at the strike price if it coincides with a terminal stock price

but has no jump if the strike is situated between stock prices.
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• The price of an Europen call option with the center binomial model

satisfied

Cn = CBS +
C1

n
+ o

(

1

n

)

.

• The price of an Europen digital option with the center binomial model

satisfied

Dn = e−rTN(d2) +
C3

n
+ o

(

1

n

)

.
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Joshi 1
The propose adjusted tree is obtained using

• u = eµ∆T+σ
√
T

• d = eµ∆T−σ
√
T

• p = er∆T−d

u−d

• µ is choosen so that the tree is centered on the strike in log space.

µ =
1

T
(logK − log S0)

• Cn = CBS + C1

n +O
(

1
n2

)

.
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Tian third moment matching tree
Tian model. J.R. Tian (93) A modified lattice approach to option pricing. Journal of Future

Markets

The equations that u, d, q should satisfy are

qu+ (1 − q) d = e
r∆T

,

qu2 + (1 − q) d2 − e2r∆T = e2r∆T

(

eσ
2∆T − 1

)

.

Since one degree of freedom remains, a natural idea is to match also the third moment, which

gives the equation

qu3 + (1 − q) d3 = e3r∆T e3σ
2∆T .
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The solution of this system is

u =
er∆TQ

2

[

1 +Q+
√

Q2 + 2Q− 3
]

,

d =
er∆TQ

2

[

1 +Q−
√

Q2 + 2Q− 3
]

,

q =
er∆T − d

u− d
,

with Q = eσ
2∆T . Notice that ud = e2r∆TQ2 > 1 : this tree is not symmetric.
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Joshi 2
Joshi study 20 different implementation methodologies for pricing American

Put options.

The best method is obtained with the Tian three moment matching method

combined with

• Smoothing BBS.

• Richardson extrapolation.

• Truncation.
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