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The emission of ordinary negative electrons from the nucleus was among the
earliest observed radioactive decay phenomena. The inverse process, capture by a
nucleus of an electron from its atomic orbital, was not observed until 1938 when
Alvarez detected the characteristic X rays emitted in the filling of the vacancy left
by the captured electron. The Joliot-Curies in 1934 first observed the related
process of positive electron (positron) emission in radioactive decay, only two
years after the positron had been discovered in cosmic rays. These three nuclear
processes are closely related and are grouped under the common name beta (fi)
decay.

The most basic /3  decay process is the conversion of a proton to a neutron or of
a neutron into a proton. In a nucleus, /3  decay changes both Z and N  by one
unit: Z --)  Z f 1, N  --) N  r 1 so that A = Z + N  remains constant. Thus B
decay provides a convenient way for an unstable nucleus to “slide down"  the
mass parabola (Figure 3.18, for example) of constant A and to approach the
stable isobar.

In contrast with a decay, progress in understanding fi  decay has been achieved
at an extremely slow pace, and often the experimental results have created new
puzzles that challenged existing theories. Just as Rutherford’s early experiments
showed a particles to be identical with 4He  nuclei. other early experiments
showed the negative p particles to have the same electric charge and charge-
to-mass ratio as ordinary electrons. In Section 1.2. we discussed the evidence
against the presence of electrons as nuclear constituents, and so we must regard
the /3 decay process as “creating” an electron from the available decay energy at
the instant of decay; this electron is then immediately ejected from the nucleus.
This situation contrasts with a decay, in which the α particle may be regarded as
having a previous existence in the nucleus.

The basic decay processes are thus:

n+p+e- negative beta decay ( ,O-  )

p+n+e+ positive beta decay ( fi  ’ )

p+e--,n orbital electron capture (. E)

These processes are not complete. for there is yet another particle (a neutrino or
antineutrino) involved in each. The latter two processes occur only for protons



BETA DECAY 273

0 0.5 1. 0 1.5
Electron kinetic energy (MeV)

Figure 9.1 The continuous electron distribution from the /3 decay of 210Bi ( al s o
called RaE in the literature).

bound in nuclei; they are energetically forbidden for free protons or for protons
in hydrogen atoms. .

9 .1 ENERGY  RELEASE IN 8  DECAY
The continuous energy distribution of the &decay  electrons was a confusing
experimental result in the 1920s.  Alpha particles are emitted with sharp, well-
defined energies, equal to the difference in mass energy between the initial and
final states (less the small recoil corrections); all a decays connecting the same
initial and final states have exactly the same kinetic energies. Beta particles have
a continuous distribution of energies, from zero up to an upper limit (the
endpoint energy) which is equal to the energy difference between the initial and
final states. If B  decay were, like a decay, a two-body process, we would expect
all of the /3  particles to have a unique energy, but virtually all of the emitted
particles have a smaller energy. For instance, we might expect on the basis of
nuclear mass differences that the /3 particles from ‘loBi  would be emitted with a
kinetic energy of 1.16 MeV,  yet we find  a continuous distribution from 0 up to
1.16 MeV  (Figure 9.1).

An early attempt to  account for this “missing” energy hypothesized that the
/3’s are actually emitted with 1.16 MeV  of kinetic energy, but lose energy, such as
by collisions with atomic electrons, before they reach the detection system. Such
a possibility was eliminated by very precise calorimetric experiments that con-
fined a /? source and measured its decay energy by the heating effect. If a portion
of the energy were transferred to the atomic electrons, a corresponding rise in
temperature should be observed. These experiments showed that the shape of the
spectrum shown in Figure 9.1 is a characteristic of the decay electrons themselves
and not a result of any subsequent interactions.

To account for this energy release, Pauli  in 1931 proposed that there was
emitted in the decay process a second particle, later named by Fermi the
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neutrino. The neutrino carries the “missing” energy and, because it is highly
penetrating radiation, it is not stopped within the calorimeter, thus accounting
for the failure of those experiments to record its energy. Conservation of electric
charge requires the neutrino to be electrically neutral, and angular momentum
conservation and statistical considerations in the decay process require the
neutrino to have (like the electron) a spin of i. Experiment shows that there are
in fact two different kinds of neutrinos emitted in fl decay (and yet other varieties
emitted in other decay processes; see Chapter 18). These are called the neutrino
and the antineutrino and indicated by Y and i;. It is the antineutrino which is
emitted in B-  decay and the neutrino which is emitted in 4’  decay and electron
capture. In discussing j3 decay, the term “neutrino” is often used to refer to both
neutrinos and  antineutrinos, although it is of course necessary  to distinguish
between them in writing decay processes; the same is true for “electron.”

To demonstrate b-decay  energetics we first consider the decay of the free
neutron (which occurs with a half-life of about 10 min),

n+p+e’+G.  
As we did in the  case of a decay, we define the Q values to be the difference
between the initial and final nuclear mass energies.

Q=(m,-m,-me-m,)c2  (9.1)
and for decays of neutrons at rest,

Q- Tp+  T,+  G (9.2)

For the moment we will ignore the proton recoil kinetic energy  Tp,  which
amounts to only 0.3 keV. The antineutrino and electron will then share the decay
energy, which: accounts for the continuous electron spectrum.  The maximum-
energy electrons correspond to minimum-energy antineutrinos, and when the
antineutrinos have vanishingly small energies, Q = (T,) -. The measured maxi-
mum energy of the electrons is 0.782 f 0.013 MeV.  Using the measured neutron.
electron, and proton masses, we can compute the Q value:

Q =  mnc2 - mpc2  - mec2 - myc2

= 969.573 MeV - 938.280 MeV - 0.511 MeV - mlc2

= 0.782 MeV - mfc2
Thus to within the precision of the measured maximum energy (about 13 keV)
we may regard the antineutrino as massless. Other experiments provide  more
stringent upper limits, as we discuss in Section 9.6, and for the present discussion
we take the masses of the neutrino and antineutrino to be identically zero.

Conservation of linear momentum can be used to identify  fl decay as a
three-body process, but this requires measuring the momentum of the recoiling
nucleus in coincidence with the momentum of the electron. These experiments
are difficult, for the low-energy nucleus (T 5  keV)  is easily scattered, but they
have been done in a few cases, from which it can be deduced that the vector sum
of the linear momenta  of the electron and the recoiling nucleus is consistent with
an unobserved third particle carrying the “missing” energy and having a rest
mass of zero or nearly zero. Whatever its mass might be, the existence of the
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additional particle is  absolutely required by these experiments. for the momenta
of the electron and nucleus certainly do not sum to zero. as they would in a
two-body decay.

Because the neutrino  is massless, it moves with the speed of light and its total
relativistic energy I?,  is the same as its kinetic energy; we will use E, to represent
neutrino energies. (A review of the concepts and formulas of relativistic kine-
matics may be found in Appendix A.) For the electron, we will use both its
kinetic energy T, and its total relativistic energy E,, which are of course related
by E, = Te + m,c2.‘(Decay  energies are typically of order MeV;  thus the nonrel-
ativistic  approximation T c MC’  is certainly not valid for the decay electrons.
and we must use relativistic  kinematics.) The nuclear recoil is of very low energy
and can be treated nonrelativistically.

Let’s consider a typical negative &decay  process in a nucleus:

%- z+:X’N,l  + e- + F
(9.3)

QB-  = [m&X)  - m,(z+:~)  - me]c’
where mN indicates nuclear  masses. To convert nuclear masses into the tabulated
neutral atomic mass+, which we denote as m(“X),  we use

Z

nJ( *X)C2  = rnN(“X)C2 + zmec2 - c Bi (9.4)
i - l

where Bi  represents the binding energy of the ith electron. In terms of atomic
masses,

Q,- = ([#X)  - zm,]  - [ m( “X’) - (Z + l)m,]  - m,) c2

+ iflBi- 1

(

z+1

c B.) (9.5)
c i-1

Notice that the electron masses cancel in this case. Neglecting the differences in
electron binding energy, we therefore find

Qg-  = [m(“X)  - m(“X’)]c2 (9.6)
where the masses are neutral atomic masses. The Q value represents the energy
shared by the electron  and neutrino:

Q, - =<+Ejj (9.7)
and it follows that each has its maximum when the other approaches zero:

(T,), = @dmu  = Q/ r (9.8)
In the case of the 210Bi --) 210Po  decay, the mass tables give

Qg- = [rrr(210Bi)  - m(210Po)]~2

= (209.984095 u - 209.982848 u)( 931.502 MeV/u)
= 1.161 MeV

Figure 9.1 showed (T,),,  = 1.16 MeV,  in agreement with the value expected
from Q,-.  Actually, this is really not an agreement between two independent
values. The value of Qg-  is used in this case to determine the mass of 210Po,  with
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the mass of ,*“Bi determined from that of ‘09Bi  using neutron capture. Equation
9.6 is used with the measured Qa-  to obtain m(  *XI).

In the case of positron decay, a typical decay process is

:x,  + z-jX’,+l  + e+  + v
and a calculation similar to the previous one shows

(Is+=  [m(“X)  - ??qX’)  - 2m,]c’ (9.9) 
again using atomic masses. Notice that the electron masses do not cancel in this
case.

For electron-capture processes, such as
IX, + e- +z-:X$+l  + v

the calculation of the Q value must take into account that the atom X' is in an
atomic excited state immediately after the capture. That is, if the capture takes
place from an inner shell, the K shell for instance, an electronic vacancy in that
shell results. The vacancy is quickly filled as electrons from higher shells  make
downward transitions and emit characteristic X rays. Whether one X ray is
emitted or several, the total X-ray energy is equal to the binding energy of the
captured electron. Thus the atomic mass of X' immediately after the decay is 
greater than the mass of X' in its atomic ground state by B,,,  the binding energy
of the captured n-shell electron (n = K, L, . . . ). The Q value is then

Q, = [m(*X)  - m(*X’)]c*  - B, (9.10)
Positive’ beta decay and electron capture both lead from the initial nucleus

ix,,,  to the final  nucleus *X’Z - 1  N+l* but note that both  may  not  always be
energetically possible (Q must be positive for any decay process). Nuclei for
which j3’  decay is energetically possible may also undergo electron capture, but
the  reverse is not true-it is possible to have Q > 0 for electron capture while
Q < 0 for /3+  decay. The atomic mass energy difference must be at least
2m,c2  = 1.022 MeV  to permit /A?’  decay.

In positron decay, expressions of the form  of Equations 9.7 and 9.8 show that
there is a continuous distribution of neutrino energies up to QB+ (less the usually
negligible nuclear recoil). In electron capture, however. the two-body final state
results in unique values for the recoil energy and E,. Neglecting the recoil, a
monoenergetic neutrino with energy Q, is emitted. ,

All of the above expressions  refer to decays between nuclear ground states. If
the final nuclear state X'  is an excited state, the Q value must be accordingly

Table  9.1 Typical @Decay  Processes

Decay Type Q (MeV) *1/z

23Ne  jz3Na  + e- + i B- 4.38 38 s
wTc hwRu  + e- + V 8- 0.29 2.1 x lo5 y
25A dz5Mg + e’ + v P’ 3.26 7.2 s
1241  3 lz4Te + et + v B’ 2.14 4.2 d
I50 + e- +“N + v e 2.75 1.22 s
“Ca + e- d4’K + v E 0.43 1.0 x 1oj y
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decreased by the excitation energy of the state:

Qa  = Qgr ounc i  - L (9.11)

Table 9.1 shows some typical fi  decay processes. their energy releases. and
their half-lives.

9 . 2 FERMI T H EORY  OF f i  DECAY

In our calculation of α-decay half-lives in Chapter 8, we found that the barrier
penetration probability was the critical factor in determining the half-life. In
negative /3 decay there is no such barrier to penetrate and even in 8’  decay. it is
possible to show from even a rough calculation that the exponential factor in the
barrier penetration probability is of order unity. There are  other important
differences between α and p decay which suggest to us that  we must use a
completely different approach for the calculation of transition probabilities in /?
decay: (1) The electron and neutrino do not exist before the decay process, and
therefore we must account  for the formation of those particles. (2) The electron
and neutrino must be treated relativistically. (3) The continuous distribution of
electron energies must result from the calculation.

In 1934, Fermi developed a successful theory of j? decay based on Pauli's
neutrino hypothesis.  The essential features of the decay can be derived from the
basic expression  for the transition probability caused by an interaction that is
weak compared with the interaction that forms the quasi-stationary states. This is
certainly true for /?  decay, in which the characteristic times (the half-lives,
typically of order seconds or longer) are far longer than the characteristic nuclear
time (lOma s). The result of this calculation, treating the decay-causing interac-
tion as a weak perturbation,  is Fermi’s Golden Rule, a general result for any
transition rate previously given in Equation 2.79:

λ = ;I v,12  P(4) (9.12)

The matrix element Vfi  is the integral of the interaction V between the initial and
final quasi-station* states of the system:

vr;  = J\ClfV#i  du (9.13)

The factor p(E,)  is the density of final states, which can also be written as
dn/dE,,  the numbp dn  of final states in the energy interval dE,.  A given
transition is more likely to occur if there is a large number of accessible final
states.

Fermi did not know the mathematical form of V for p decay that would have
permitted calculations using Equations 9.12 and 9.13. Instead, he considered all
possible forms consistent with special relativity, and he showed that V could be
replaced with one of five mathematical operators Ox, where the subscript X  gives
the  form of the operator O (that i s  its transformation properties): X  = V
(vector), A (axial vector), S (scalar), P (pseudoscalar), or T (tensor). Which of
these is correct for p decay can be revealed only through experiments that study
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the symmetries and the spatial properties of the decay products, and it took 20  
years (and several mistaken conclusions) for the correct V-A form to be deduced.

The final  state wave function must include not only the nucleus but also the
electron and neutrino. For electron capture or neutrino capture, the forms would
be similar,, but the appropriate wave function would appear in the initial state.
For /3  decay, the interaction matrix element then has the form

vfi = gjtwm*~i~~ (9.14)

where now ‘+r  refers only to the final nuclear wave function and v,, and tp,, give  
the wave functions of the electron and neutrino. The quantity in square b racke t s
represents the entire final system after the decay. The value of the constant g 
determines the strength of the interaction; the electronic charge e plays a similar 
role in the interaction between an atom and the electromagnetic field.

The density  of states factor determines (to lowest order) the shape of the  beta
energy spectrum. To find  the density of states, we need to know the number of 
final states accessible to the decay products. Let us suppose in the decay that we 
have an electron (or positron) emitted with momentum p and a neutrino (or
antineutriho) with momentumq. We are interested at this point only in the shape
of the energy spectrum, and thus the directions of p and q are of no interest. If
we imagine a coordinate system whose axes are labeled px,  pv,  pz,  then the
locus of the points representing a specific value of lpl = ( p,’  + p;  + p,‘)‘O  is a
sphere of, radius p = IpI.  More specifically, the locus of points representing
momenta  in the range dp at p is a spherical shell of radius p and thickness dp,
thus having volume 49rp2  dp. If the electron is confined to a box of volume V
(this step is taken only for completeness and to permit the wave function to be
normalized;  the actual volume will cancel from the final result), then the number
of final electron states dne, corresponding to momenta in the range p to p + dp,
is

4sp2  dp  V
dn, =

h3
(9.15)

where the factor h3  is included  to make the result a dimensionless pure number.*
Similarly, the number of neutrino states is

4wq’dq  V
dne =

h3
(9.16)

and the number of final states which have simultaneously an electron and a
neutrino with the proper momenta is

(4n)‘V2p’  dp q2  dq
d2n  = dne dnv =

hb
(9.17)

* The  available spatial and momentum states are counted in six-dimensional l-x. .V.  :.  p.,..  p, .  PI )
 phase space:  the unit volume in phase space is h3.
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The electron and neutrino wave functions have the usual free-particle form.
normalized within the volume V:

(9.18)

For an electron with 1 MeV  kinetic energy, p = 1.4 MeV/c  and p/h = 0.007
fm - ‘. Thus over the nuclear volume, pr -SK 1 and we can expand the exponen-
tials, keeping only the first term:

ip ??r

iq ??r
(9.19)

This approximation is  known as the allowed approximation.
In this approximation, the only factors that depend on the electron or neutrino

energy come from the density of states. Let’s assume we are trying to calculate
the momentum and energy distributions of the emitted electrons. The partial
decay rate for electrons and neutrinos with the proper momenta is

dX
2P2dPq2  d q

= +=b%  12(4T)  h6 x (9.20)
f

where M, = l~r*O,~i  do  is the nuclear matrix element. The final energy E, is just
Ee  + E, = E, + qc, and so dq/dE,  = l/c at fixed Ee. As far as the shape of the
electron spectrum  is concerned, all  of the factors in Equation 9.20 that do not
involve the momentum (including Mfi, which for the present we assume to be
independent of p) can be combined into a constant C. and the resulting
distribution gives the number of electrons with momentum between p and
p + dp:

N(p)  dp = Cp=q=  dp (9.21)

If Q is the decay energy, then ignoring the negligible nuclear recoil energy.

Q - T, Q - \ip%’  + rnzc’  + m,c2
0= = (9.22)3 c c

and the spectrum shape is given by

N(p)  = ;p’(Q  - T,)’ (9.23)

C
= Trp2  Q - {p2c2  + mfc” + m,c’!

1 7

I
h

(9.24)

This function vanishes at p =  0 and also at the endpoint where Te  = Q; its shape
is shown in Figure 9.2.
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Figure  9.2  Expected electron energy and momentum distributions, from Equa-
tions 9.24 and 9.25. These distributions are drawn for Cl?  = 2.5 MeV.

More frequently we are interested in the energy spectrum, for electrons with
kinetic energy between Te and T, + dT,.  With c’p  dp = (T, + m,c2) dT,,   we have

NT,) = c( T’  + 2Tem,cL  )‘3  Q - r,)‘(  Te + m,c’)
+---2

(9.25)

This distribution, which  also vanishes at T, = 0 and at Te = Q, is shown in
Figure 9.2.

In Figure 9.3,  the p’ and /3-  decays of 64Cu  are compared with the
predictions of the theory. As you can see, the general shape of Figure 9.2 is
evident, but there are systematic differences between theory and experiment.
These differences originate with the Coulomb interaction between the /3  particle
and the daughter nucleus. Semiclassically, we can interpret the shapes of the
momentum distributions of Figure 9.3 as a Coulomb repulsion of /3+  by the
nucleus, giving fewer low-energy positrons, and a Coulomb attraction of B’.
giving more low-energy electrons. From the more correct standpoint of quantum
mechanics, we should instead refer to the change in the electron plane wave.
Equation 9.19, brought about by the Coulomb potential inside the nucleus. The
quantum mechanical calculation of the effect of the nuclear Coulomb field on the
electron wave function is beyond the level of this text. It modifies the spectrum
by introducing an additional factor, the Fermi function  F(Z', p) or F’( Z’, T&
where Z' is the atomic number of the daughter nucleus. Finally, we must
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Figure 9.8 Momentum and kinetic energy spectra of electrons and positrons
emitted in the decay of 64Cu.  Compare with Figure 9.2; the differences arise from
the Coulomb interactions with the daughter nucleus. From R. D. Evans, The Atomic
Nucleus (New York: McGraw-Hill, 1955).

consider the effect of the nuclear matrix element, M,, which we have up to now
assumed not to influence the shape of the spectrum. This approximation (also
called the allowed approximation) is often found to be a very good one, but there
are some cases in which it is very bad-in fact, there are cases in which M,
vanishes in the allowed approximation, giving no spectrum  at all! In such cases,
we must take the next terms of the plane wave expansion, Equations 9.19, which
introduce yet anqther momentum dependence. Such cases are called, somewhat
incorrectly, forbidden  decays; these decays are not absolutely forbidden, but as
we will learn subsequently, they are less likely to occur than allowed decays and
therefore tend to have longer half-lives. The degree to which a transition is
forbidden depends on how far we must take the expansion of the plane wave to
find a nonvanishing  nuclear matrix element. Thus the first term beyond the 1
gives first-forbidden  decays, the next term gives second-forbidden. and so on. We
will  see in Section 9.4 how the angular momentum and parity selection rules
restrict the kinds of  decay that can occur.

The complete b spectrum then includes three factors:
1. The statistical  factor p*( Q - T,)*,  derived from the number of final states

accessible to the emitted particles.
2. The Fermi function F( Z', p), which accounts for the influence of the nuclear

Coulomb field.
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3. The nuclear matrix element IMa/  ‘. which accounts for the effects of particu-
lar initial and final nuclear states and which may include an additional 
electron and neutrino momentum dependence S(p,q)   from forbidden terms:

l’(P) cc P’(Q - <)‘F(Z’.  P)I”fi12S(P. 4) (9.26) 

9 . 3  T H E “ CLASSICAL”  EXPERIMENTAL TESTS
OF T H E FERMI  THEORV

The Shape o f  t he  8  Spec t rum

In the allowed approximation, we can rewrite Equation 9.26 as

(Q  - r ,) x \i
N(P)

P$.(Z’  p). 
(9.27)

and plotting \iN(  p)/p2F(  Z', p ) against ‘T,  should give a straight line which
intercepts the x axis at the decay energy Q. Such a plot is called a Kurie plot 
(sometimes a Fermi plot or a Fermi-Kurie plot). An example of a Kurie plot is
shown in Figure 9.4. The linear nature of this plot gives us confidence in the
theory as it has been developed, and also gives us a convenient way to determine
the decay endpoint energy (and therefore the Q value).

In the case of forbidden decays, the standard Kurie plot does not give a
straight line, but we can restore the linearity of the plot if we instead graph

N(  p)/p’F(  Z', p) S(p,q)  against T,,  where S is the momentum dependence
that results from the higher-order term in the expansion of the plane wave. The
function S is known as the shape factor; for certain first-forbidden decays, for
example, it is simply p2  + q2.

Including the shape factor gives a linear plot. as Figure 9.5 shows.

The Tot a l  Dec ay Rat e

To find the total decay rate, we must integrate Equation 9.20 over all values of
the electron momentum p,  keeping the neutrino momentum at the value de-
termined by Equation 9.22, which of course also depends on p.  Thus, for allowed
decays,

x g21W2= 
2a3h7c3  0/‘-F(Z’,  p)p’(Q - T,)‘dp (9.28)

The integral will ultimately depend only on Z’ and on the maximum electron
total energy E, (since cpmax = /Ei - m fc” ), and we therefore represent it as

1
f(z’y E”) = ( m,c)3(  m,c’)’  (jJ ‘-F(  z’,  p)p2(  E,  - Ee)2 dp (9.29)

where the constants have been included to make f dimensionless. The function
f (Z', E,) is known as the Fermi integral and has been tabulated for values of Z'
and E,.
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6.0 8.0

FIGURE 9.4 Fermi - Kurie plot of allowed 0 - + 0 T decay of 66Ga. The horizontal
scale is the relativistic total energy (T, + mec2) in units of m,c*. The deviation from
the straight line at low energy arises from the scattering of low-energy electrons
within the radioactive source, From D. C. Camp and L. M. Langer, Phys.  Rev. 129,
1782 (1963).

With λ = 0.693/t1/2, we have

2&l’
ft l/2 = 0.693

g*myp4,1*
(9.30)

 The quantity on the left side of Equation 9.30 is called the comparative half-life
or ft value. It gives us a way to compare the P-decay probabilities in different

 nuclei -Equation 9.28 shows that the decay rate depends on Z' and on E,, and
 this dependence is incorporated into f, so that differences in ft values must be  due
 to differences  in the nuclear matrix element and thus to differences in the nuclear
 wave function.

As in the case of cu  decay, there is an enormous range of half-lives in p decay
-ft  values range from about lo! to 10”  s. For this reason, what is often quoted
is the value of log10ft (with t given in seconds). The decays with the shortest

 comparative half-lives (log ft 2:  3-4) are known as superallowed  decays. Some of
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Figure 9.5 Uncorrected Fermi- Kurie plot in the fl decay of aY  (top). The
linearity is restored if the shape factor S(p,  9) is included: for this type of first-
forbidden decay, the shape factor $ + 9’ gives a linear plot (bottom). Data from L.
M. Langer and H. C. Price, Phys.  Rev.  75, 1109 (1949).

the superallowed decays have 0+ initial and final states. in which case the nuclear
matrix element can be calcaulted quite easily: M, = a. The log  ft values for
o* + 0+ decays should all be identical. Table 9.2 shows the log ft values of all
known 0+ ---)  O+ superallowed transitions. and within experimental error the
values appear to be quite constant. Moreover. with M, = a, we can use
Equation 9.30 to find a value of the β−decay strength constant

g = 0.88 X 10m4  MeV  - fm3

To make this constant more comparable to other fundamental constants. we
should express it in a dimensionless form. We can then compare it with
dimensionless constants of other interactions (the fine structure constant which
characterizes the electromagnetic interaction, for instance). Letting  M, L,  and T
represent. respectively, the dimensions of mass, length, and time, the dimensions
of g are M’L5T-2, and no combinations of the fundamental constants ti
(dimension M’L*T-  ‘)  and c (dimension L’T-  ‘)  can be used to convert g into a
dimensionless constant. (For instance, tic3  has dimension M’L5Ts5,  and so
g/AC’  has dimension  T3.)  Let us therefore introduce an arbitrary mass m and



BETA DECAY 285

Table 9.2 ft Values for 0 - -+  0’ Superallowed Decays

‘OC +‘OB
I40 +14N
“Ne 4’XF
22Mg +22Na
26/U + 26 Mg
26si 4 26/J
3oS 43Op
34c1 -34s
34Ar 434a
3nK +3nA,
3nCa +3’q
42&  +42Ca
42Ti  ,42fjc
hV d”Ti
&Cr +&V
SO& -+socr

“Co dHFe
62Ga  +62Zn

3100 & 3 1
3092 -c 4

3084 -c 76
3014 + 78

3081 5 4

3052 -t 5 1

3120 k 82
3087 f 9
3101 &- 20

3102 + 8

3145 f 138
3091 f 7

3275 + 1039

3082 + 13

2834 f 657

3086 f 8
3091 -t- 5

2549 & 1280

ry to choose the exponents i, j, and k so that g/m’A@  is dimensionless. A
olution immediately follows with i = - 2. j = 3, k = - 1. Thus the desired
atio, indicated by G, is

g m4
G =

m-2h3c-l  = gF (9.31)

There is no clear indication of what value to use for the mass in Equation 9.31. If
we are concerned with the nucleon-nucleon interaction, it is appropriate to use
he  nucleon mass, in which case the resulting dimensionless strength constant is
f= 1.0 x 10- 5. The comparable constant describing the pion-nucleon interac-
tion, denoted by g,”  in Chapter 4, is of order unity. We can therefore rank the
Four basic nucleon-nucleon interactions in order of strength:

pion-nucleon (“strong”)
electromagnetic
/.3  decay (“weak”)
gravitational

1
lo-’
1o-5
lo-39

The  last entry follows from a similar conversion of the universal gravitational
constant into dimensionless form also using the nucleon mass.) The p-decay
interaction is one of a general class of phenomena known collectively as weak
interactions, all of which are characterized by the strength parameter g. The
Fermi theory is remarkably successful in describing these phenomena. to the
extent that they are frequently discussed as examples of the universal Fermi
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interaction. Nevertheless. the Fermi theory fails in several respects to
some details of the weak interaction (details which are unimportant for
present discussion of /3  decay). A theory that describes the weak interaction
terms of exchanged particles (just as the strong nuclear force was
Chapter 4) is more successful in explaining these properties.  The recently 
discovered exchanged particles (with the unfortunate name intermediate
bosons) are discussed in more detail in Chapter 18.

The Mass  o f  the  Neut rino
The Fermi theory is based on the assumption that the rest mass of the neutrino is 
zero. Superficially, it might seem that the neutrino rest mass  would be a  
reasonably easy quantity to measure in order to verify this assumption.  Looking
back at Equations 9.1 and 9.2. or their equivalents for nuclei with A > 1, we   
immediately see a method to test the assumption. We can calculate the decay O
value (including a possible nonzero value of the neutrino mass) from Equations
9.6 or 9.9, and we can measure the Q value. as in Equation 9.8,  from the 
maximum energy of the j3  particles. Comparison of these two values then permit
a value for the neutrino mass to be deduced.

From this procedure we can conclude that the neutrino rest mass is smaller
than about 1 keV/c2, but we cannot extend far below that limit  because the 
measured atomic masses used to compute Q have precisions of the order of keV, 
and the deduced endpoint energies also have experimental uncertainties  of the
order of keV.  A superior method uses the shape of the p spectrum  near the upper  
limit. If m, # 0 then Equation 9.22 is no longer strictly valid. However, if 
m,c2 a Q, then over most of the observed j3  spectrum f?,  =B  m,c2  and th 
neutrino can be treated in the extreme relativistic approximation E, = qr. In this 
case. Equation 9.22 will be a very good approximation and the neutrino mass will
have a negligible effect. Near the endpoint of the /3  spectrum, however,  the
neutrino energy approaches zero and at some point we would expect E,  - mc*,
in which case our previous calculation of the statistical factor for the spectrum
shape is incorrect. Still closer to the endpoint. the neutrino kinetic  energy
becomes still smaller and we  may begin to treat it nonrelativistically,  so that
q ’ = 2m,T,  and

Y(p)  cc p”  [Q -  y’p’c’  + mfc’
, l/2

+ m,c- 1 (9.32)

which follows from a procedure similar to that used to obtain Equation 9.24,
except that for m,  > 0 we must use dq/dE,  = mJq  in the nonrelativistic limit.
Also,

N( q.) x  (T:  + 2T,m,c’)1’2(  Q - T, j1’2( T, + m,c’) (9.33)

The quantity in square brackets in Equations 9.32 and 9.24, which is just
( Q - <).  vanishes at the endpoint. Thus at the endpoint dN/dp  3 0 if m,  =  0,
while dN/ dp + so  if m, > 0. That is. the momentum spectrum approaches the
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,2 keV/c 2967.32 keV/c

2500 keV
Figure 9.6 Expanded view of the upper 1-keV region of the momentum and
energy spectra of Figure 9.2. The normalizations are arbitrary; what is significant is
the difference in the shape of the spectra for m, = 0 and m, f 0. For m, = 0, the
slope goes to zero at the endpoint: for m, f 0, the slope at the endpoint is infinite.

endpoint with zero slope for ~tl,  = 0 and with infinite slope for m,  > 0. The slope
of the energy spectrum, dN/dT’.  behaves identically. We can therefore study the
limit on the neutrino mass by looking at the slope at the endpoint of the
spectrum, as suggested by Figure 9.6. Unfortunately N(p) and MT,) also
approach zero  here, and we must study the slope of a continuously diminishing
(and therefore statistically worsening) quantity of data.

The most attractive choice for an experimental measurement of this sort would
be a decay with a small  Q (so that the relative magnitude of the effect is larger)
and one in which the atomic states before and after the decay are well under-
stood, so that the important corrections for the influence of different atomic
states can be calculated. (The effects of the atomic states are negligible in most
wecay  experiments, but in this case in which we are searching for a very small
effect, they become important.) The decay of 3H (tritium) is an appropriate
candidate under both criteria. Its Q value is relatively small (18.6 keV  ), and the
one-electron atomic wave functions are well known. (In fact, the calculation of
the state of the resulting 3He  ion is a standard problem in first-year quantum
mechanics.) Figure 9.7 illustrates some of the more precise experimental results.
Langer and Moffat  originally reported an upper limit of m,c’  < 200 eV, while
two decades later, Bergkvist reduced the limit to 60 eV. One recent result may
indicate a nonzero  mass with a probable value between 14 and 46 eV, while
others suggest an upper limit of about 20 eV. Several experiments are currently
being performed to resolve this question and possibly to reduce the upper limit.
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Figure 9.7 Experimental determination of the neutrino mass from the fi decay of
tritium (3H). The data at left, from K.-E. Bergkvist,  Nucl. Phys.  B 39, 317 (1972).  are
consistent with a mass of zero and indicate an upper limit of around 60 eV.  T h e
more recent data of V. A. Lubimov  et al., Phys.  Lett.  B 94, 266 (1980).  seem to
indicate a nonzero  value of about 30 eV;  however, these data are subject to
corrections for instrumental resolution and atomic-state effects and may be con-
sistent with a vanishing mass.

Why is so much effort expended to pursue these measurements? The neutrino
mass has very important implications for two areas of physics that on the surface
may seem to  be unrelated. If the neutrinos have mass, then the “electroweak”
theoretical formulism  which treats  the weak and electromagnetic interaction as
different  aspects of the same basic force, permits electron-type neutrinos, those
emitted in /3  decay, to convert into  other types of neutrinos. called muon and τ
neutrinos (see Chapter 18). This conversion may perhaps explain why the number
of neutrinos we observe coming from the sun is only about one-third of what it is
expected to be, based on current theories of solar fusion. At the other end of the 
scale, there seems to be more matter holding the universe together than we can
observe with even the most powerful telescopes. This matter is nonluminous,
meaning it is not observed to emit any sort of radiation. The Big Bang, cos-
mology, which seems to explain nearly all of the observed astronomical phenom-
ena, predicts that the present universe should be full  of neutrinos from the early
universe. with  a present concentration of the order of 108/m3.  If these neutrinos
were massless, they could not supply the necessary gravitational attraction to
“close” the universe (that is, to halt and reverse the expansion), but with rest
masses as low as 5 eV. they would provide sufficient mass-energy density. The
study of the neutrino mass thus has direct and immediate bearing not  only  on
nuclear and particle physics. but on solar physics and cosmology as well.


