
Nuclear Reaction Rates

The rate for a given reaction depends on the number density of the
reactants, Na and NX , the rate these reactants encounter each other
(i.e., their velocity) and on the cross section for the reaction

σ =
number of reactions/nucleus X /unit time

number of incident particles/cm
2
/unit time

Moreover, because of the electrostatic repulsion of the reactants
(and because of atomic resonances) the cross section itself is a func-
tion of particle velocity. Thus

raX = NaNXσ(v)v

Of course, the particles in a star will have a distribution of veloci-
ties, hence in order to calculate the true reaction rate, we have to
integrate over a velocity distribution, φ(v). In addition, if a and X
are identical particles, the number of particle pairs will not be N2

X ,
but only 1/2 this value. Thus the actual reaction rate will be

raX = (1 + δaX)−1 NaNX

∫

∞

0

σ(v) v φ(v) dv

= (1 + δaX)−1
ρ2N2

AXaXX

AaAX
〈σv〉 (11.1)

where δaX is the Kronecker delta, and NA is Avogadro’s number.
For φ(v) we can substitute in the Maxwellian distribution, which,
in the center of mass frame, is

φ(v) dv = 4πv2

( µ

2πkT

)3/2

exp

(

− µv2

2kT

)

dv



where µ is the reduced mass

µ =
M(a)M(X)

M(a) + M(X)

Thus, the reaction rate is

〈σv〉 = 4π
( µ

2πkT

)3/2
∫

∞

0

v3σ(v)e−µv2/2kT dv

=

(

8

πµ

)1/2 (

1

kT

)3/2 ∫

∞

0

σ(E)Ee−E/kT dE (11.2)

The value 〈σv〉 itself depends on three factors:

• The probability of overcoming the coulomb barrier
• The probability of a quantum-mechanical interaction
• Whether the reaction occurs near a nuclear resonance

NON-RESONANT REACTIONS

Before any nuclear reaction can occur, a substantial potential barrier
must be overcome. For a typical nuclear size of 1.2 fm= 10−13 cm,
this barrier is equivalent to

V =
ZaZXe2

R
∼ kT ; T ∼ 1.4 × 1010K

This temperature is orders of magnitude higher than that found
in stars. Thus, for nuclear reactions to proceed, particles must
tunnel through the potential barrier. From quantum mechanics,
the probability of doing this is

P ∝ exp

{

− 2πZaZXe2

h̄v

}

∝ exp

{

− 2(2µ)1/2π2ZaZXe2

hE1/2

}

(11.3)



Quantum mechanics also says that the cross section for two inter-
acting particles is proportional to the de Broglie wavelength of the
particles (since each particle sees the other as a smear over length
λ = h̄/p). Thus,

P ∝ πλ2 ∝
(

1

p

)2

∝ 1

E
(11.4)

Thus, as long as there are no resonances,

σ =
S(E)

E
exp

{

− 4π2ZaZXe2

hv

}

(11.5)

where the astrophysical cross-section S(E) is a slowly varying func-
tion that contains factors which are intrinsic to the individual nu-
cleus. With this definition, the nuclear reaction rate, as a function
of temperature (11.2) becomes

〈σv〉 =

√

8

πµ

(

1

kT

)
3

2
∫

∞

0

S(E) exp

{

− E

kT
− 2

√
2µ π2ZaZXe2

hE1/2

}

dE

=

√

8

πµ

(

1

kT

)
3

2
∫

∞

0

S(E) exp

{

− E

kT
− b

E1/2

}

dE (11.6)

where b = 0.99Z1Z2A
1/2 MeV1/2 and A is the reduced atomic

weight in a.m.u.

We can evaluate (11.6) (or, at least, approximate its solution) using
the method of steepest descent. First, note that the integrand is
a sharply peaked exponential; by setting the derivative of the ex-
ponent to zero, it is easy to show that the “Gamow peak” occurs
at

E0 =

(

bkT

2

)2/3

(11.7)



Next, let’s expand the argument of the exponential as a Taylor series
about E0, i.e.,

f(E) = − E

kT
− b

E1/2
= f(E0)+f

′

(E0)(E−E0)+
f

′′

(E0)

2!
(E−E0)

2+

If we substitute for b using (11.7), the first term is simply

−τ = −E0

kT
− b

E
1/2

0

= −3E0

kT

The second term then disappears (by definition of f
′

(E0)). That
leaves the third term:

f
′′

(E0)

2!
(E − E0)

2 = −1

2

(

3b

4E
5/2

0

)

(E − E0)
2

= −3b

8

(

2

bkT

)
5

3

(E − E0)
2 =

−3

4E0kT
(E − E0)

2

Now let ∆ = 4
√

E0kT/3. The reaction rate given by (11.6) then is

〈σv〉 =

√

8

πµ

(

1

kT

)
3

2

e−τ

∫

∞

0

S(E) exp

[

−
(

E − E0

∆/2

)2
]

dE

(11.8)
Now let’s look at the lower limit of the integral. For tempertures
T <∼ 109 K, one can show using (11.7) that E0 À ∆. This being
the case, the lower end of the integral contributes very little to the
result. We can therefore change the lower limit to negative infinity
without much penalty, and make the integral analytic. Thus

〈σv〉 =

(

8

πµ

)1/2 (

1

kT

)3/2

e−τS(E0)π
1/2∆ (11.9)



which, after a bit of simple math yields

τ = 42.48

(

Z2
aZ2

XA

T6

)1/3

= B T
−1/3

6
(11.10)

and
〈σv〉 = K (AZaZX)

−1
S(E0) τ2e−τ (11.11)

where K = 4.5×1014 if S(E0) is measured in erg-cm2, or 7.2×10−19

if it is given in the more common (at least for nuclear physics) units
of keV-barns.

The previous analysis assumes that S(E) is constant at S(E0) over
the relevant range of the Gamow peak. We can improve upon this
approximation by expanding S(E) as a power series, and repeating
the cross section calculation. If we substitute

S(E) = S(E0) +

(

∂S

∂E

)

E0

(E − E0)

in (11.6) and do (quite a bit) of math, we find that, to first order
in 1/τ , the result of (11.9) should be corrected by a factor of

G(τ) = 1 +
5

2

E0

S(E0)

(

∂S

∂E

)

E0

1

τ
= 1 +

5

6

kT

S(E0)

(

∂S

∂E

)

E0

What this says, is that instead of using S(E0) in (11.9) and (11.11),
we should define a variable S0 and use that instead. This new
variable is the weighted average of the astrophysical cross section
over the peak, which is given by

S0 = S(E0)G(T ) = S(E0) +
5

6

(

∂S

∂E

)

E0

kT

≈ S(E0 +
5

6
kT ) (11.12)



Note that, in this form of (11.9 - 11.11), the temperature depen-
dence is entirely in the variable τ , which is proportional to T−1/3.
Formally,

〈σv〉 =
0.72 × 10−18a2S0

ZaZXA

e−aT
−1/3

6

T
2/3

6

cm3 s−1 (11.13)

(where a = 42.49 (Z2
aZ2

XA)1/3 and S is in keV-barns), but we can
see the temperature dependence better by taking the logarithmic
derivative of 〈σv〉 from (11.11), i.e.,

ν =
d ln〈σv〉
d lnT

=

(

d ln〈σv〉
d ln τ

) (

d ln τ

d lnT

)

=
τ − 2

3

=
14.16

T
1/3

6

{

Z2

aZ2

XA
}1/3 − 2

3
(11.14)

For typical central temperatures of stars (between 106 and 107 K),
ν >∼ 5. Nuclear reactions in stars are extremely sensitive to temper-
ature!



The Gamow peak for non-resonant reactions



Experiments measuring λ for 12C(p, γ)13N vs. stellar conditions.



Energy level diagram for nucleus of 11B.



RESONANT REACTIONS

The nucleus of an atom has energy levels similar to those of elec-
trons. If the energy of an interacting particle coincides with the
energy of one those levels, a resonance occurs, and the probabil-
ity of interaction is boosted by several orders of magnitude. In
this case, the off-resonance interactions (described above) become
insignificant.

To compute the reaction rate for resonances, consider first that the
reaction described in (10.4.1) is actually

a + X −→ Z∗ −→ Y + b (11.15)

When the reaction occurs, particle a and X form a compound nu-
cleus Z, which is in an excited state. Just like an atom, this excited
state can be described via a series of quantum numbers. Also, just
like an atom, an excited nucleus will, after a very brief period of
time, decay to a lower energy state. This lower energy state may
be Y + b.

To estimate the strength of a nuclear resonance, let’s first perform a
semi-classical estimate of the maximum theoretical cross-section of
nucleus X to particle a. First, let’s say that the angular momentum
quantum number of the Z∗ state is `. Classically, the cross section of
X to a would be πb2, where b is the impact parameter. In the realm
of quantum mechanics, however, the impact parameter is given by
the de Broglie wavelength of the particle pair, λ̄ = h̄/p. Since
angular momentum is a quantized variable, this implies that the
impact parameter is constrained so that b = `λ̄. Moreover, since
angular momentum must be conserved, a collision which excites
a nucleus to a state with angular momentum ` must taken place
between the ` and ` + 1 orbital. So

σ = π {(` + 1) λ̄}2 − π(`λ̄)2 = (2` + 1)πλ̄2 (11.16)



This argument (in addition to being non-rigorous) ignores particle
spins, which interact with orbital angular momentum vectorially. In
practice, the theoretical limit to the cross section is

σ = πλ̄2 ω = πλ̄2 2J + 1

(2Ja + 1)(2JX + 1)
(11.17)

where J is the total angular momentum of the resonance state, and
Ja and JX are the total angular momenta of particles a and X.

Next, let’s consider the stability of state Z∗. Through the uncer-
tainty principle, there is a relation between a state’s lifetime and its
energy width, specifically, Γ = h̄/τ . Thus, the probability of a state
decaying via method i (as opposed to all other methods) is

Pi =
1/τi

∑

j

(1/τj)
=

τ

τi
=

Γi

Γ
(11.18)

Finally, consider the energy width of a given state. In exact analogy
to electron orbitals, there is a finite energy width to a nuclear state;
just like atoms, the width of the state is given by

f(E) =
Γ2

(E − Er)2 + (Γ/2)2
(11.19)

where Er is the mean energy of the state. (Again, this is due to the
uncertainty principle. The total energy of the state is indeterminate;
we only have a probability estimate.)



We can now estimate the nuclear resonance cross section. This cross
section involve three terms. The first is simply the energy width of
the state. The probability of an interaction depends on the exact
energies of the incoming particles: the closer to the mean energy
of the resonance, the higher the probability of interaction, i.e., σ ∝
f(E). Next, one must consider the probability of a actually decaying
into state Z∗ as opposed to all other states. This probability is
simply Γa/Γ. Finally, the probability of state Z∗ doing anything
except decaying back into particle a (and therefore not producing
any reaction) is (Γ − Γa)/Γ. Therefore

σ = πλ̄2ω
Γ2

(E − Er)2 + (Γ/2)2

(

Γa

Γ

) (

Γ − Γa

Γ

)

or

σ = πλ̄2ω
Γa(Γ − Γa)

(E − Er)2 + (Γ/2)2
(11.20)

If we substitute for λ̄ = h̄/p using p =
√

2µE, and if there is only
one possible decay option (i.e., Γb = Γ − Γa), then

σ(E) = πω

(

h̄2

2µE

)

ΓaΓb

(E − Er)2 + (Γ/2)2
(11.21)

(This is the Breit-Wigner single-level formula.)



To estimate the rate of a resonance reaction in stars, σ(E) can be
substituted into the integral of (11.2). Over the width of a typical
resonance (∼ 1 eV), the Maxwellian distribution barely changes,
hence we can adopt its value at the resonance, i.e.,

〈σv〉 =

√

8

πµ

(

1

kT

)
3

2
∫

∞

0

σ(E)Ee−E/kT dE

=

√

8

πµ

(

1

kT

)
3

2
∫

∞

0

(

πωh̄2

2µE

)

ΓaΓbEe−E/kT

(E − Er)2 + (Γ/2)2
dE

=
√

2π

(

1

µkT

)
3

2

ωh̄2ΓaΓbe
−Er/kT

∫

∞

0

dE

(E − Er)2 + (Γ/2)2

For simplicity, we can again take the lower limit on the integral to
negative infinity, i.e.,

∫

∞

−∞

dE

(E − Er)2 + (Γ/2)2
=

1

Γ/2
tan−1

(

E

Γ/2

)

]

∞

−∞

=
2π

Γ

This gives us

〈σv〉 = h̄2

(

2π

µkT

)3/2 {

ω
ΓaΓX

Γ

}

e−Er/kT

= 8.08 × 10−9 (AT6)
−3/2

(ωγ)r e−11605Er/T6 (11.22)

where Er and (ωγ)r = ω ΓaΓx

Γ
are given in MeV, and the reduced

mass A is given in atomic mass units. Again, there is an extremely
steep temperature dependence, with

ν =
d ln〈σv〉
d lnT

=
11605Er

T6

− 3

2
(11.23)



For typical energies of ∼ 0.1 MeV, and temperatures of T6 ∼ 50,
ν ∼ 20.

A few points

• In astrophysical situations, reactions sometimes change from
one regime to another, depending on the temperature of the star,
and the energy of the resonance.

• Sometimes, it is very difficult to find all the resonances of a
nucleus in the lab, and if a narrow resonance is missed, the quoted
reaction rate will be substantially off.

• Heavy elements have many more resonances than light elements;
by the time you get into the third row of the periodic table, all the
reactions proceed through (overlapping) resonances.

• If particle a is a neutron, then there is no Coulomb barrier to
overcome, and the cross section for capture is nearly independent
of energy. Neutron reactions are only important for heavier ele-
ments (A >∼ 60) and are not energetically important. (Their rate is
primarily determined by the number of free neutrons in the star.)

• Some reactions (including the initial reaction in the proton-
proton chain) involved the weak nuclear force. The temperature
dependence of these reactions may be different from either of the
forms presented above. (They depend on overlapping wave functions
and the strength of the individual reaction.)


