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Fullerenes and Fullerene Graphs

m Fullerene is a 3-regular (or
cubic) carbon molecule, where

atoms are arranged in f

pentagons and hexagons. ’ Q
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Fullerenes and Fullerene Graphs

m Fullerene is a 3-regular (or
cubic) carbon molecule, where

atoms are arranged in f

pentagons and hexagons.

m Fullerene graph is a planar, ’

3-regular and 3-connected
graph, twelve of whose faces \0
are pentagons and any

remaining faces are hexagons.
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Fulleroids

m Fulleroid 1s a cubic convex
polyhedron with faces of size 5
or greater.
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Fulleroids

m Fulleroid 1s a cubic convex
polyhedron with faces of size 5
or greater.

m only pentagons and hexagons
= fullerenes
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Fulleroids

m Fulleroid 1s a cubic convex
polyhedron with faces of size 5
or greater.

m only pentagons and hexagons
= fullerenes

m only pentagons and n-gons
= (5,n)-fulleroids
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Symmetry of convex polyhedra

otations, reflections, point inversion. ..
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Symmetry of convex polyhedra

otations, reflections, point inversion. ..
symmetry group of a convex polyhedron
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Symmetry of convex polyhedra

otations, reflections, point inversion. ..
symmetry group of a convex polyhedron

Possible symmetry groups:

m [cosahedral: ., .¥

m octahedral: 0}, ¢

m tetrahedral: 93,, .7, 7

m cylindrical: 2,1, Znay Zn (n > 2)
m skewed: %%, €, (n > 2)

m pyramidal: €,,,, €, (n > 2)

m [ow symmetry: €, €;, 61
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Symmetry of fullerenes

Fowler and al. (1993). Possible symmetry: only 28
out of 36 groups

Babi ¢, Klein and Sah (1993): All fullerenes with up to
70 vertices classified according to the symmetry group
Fowler and Manolopoulos (1995): Symmetry of all
fullerenes with up to 100 vertices; the smallest
I'-fullerene for each symmetry group I'; the smallest
I'-fullerene without adjacent pentagons for each
symmetry group T’

Graver (2001): Catalogue of all fullerenes with ten or
more symmetries
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lcosahedral fulleroids

ress and Brinkmann (1996): The smallest .#,(5,7)
and .7 (5, 7)-fulleroids are unique

Delgado Friedrichs and Deza (2000):
2,(5,n)-fulleroids for n =8, 9, 10, 12, 14 and 15

Jendrol and Trenkler (2001): .#(5,n)-fulleroids for all
n > 8

K.:.#(5,n)-fulleroids for all n > 7
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Octahedral fulleroids

ndrol and K. (to appear):. Letn > 7. Then
0y,(5,n)-fulleroids exist if and only if

(D n=0 (mod 60) or

(I)n=0 (mod4)andn =0 (mod}5).

K.: Analogous claim for the group &.
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Tetrahedral fulleroids

K. (to appear). Letn > 6.
Then 7,(5, n)-fulleroids exist If
and only if n £ 5 (mod 10).
7 (5,n)- and .7,(5,n)-fulleroids
exist for all n > 6.
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Other symmetry types I.

he groups I, for which I'(5, n)-fulleroids exist for all
n > 6. Dsay D34, Dony D5y Y3, Doy 6, €30y 620, Gan, €3,
©a, Cs, G, C1.
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Other symmetry types I.

he groups I, for which I'(5, n)-fulleroids exist for all
n > 6. Dsay D3ar Dony D5, I3, P2y J6, €30y G20y Gon, 63,
%21 CKS! ng'; (gl-

The groups T, for which T'(5, n)-fulleroids exist for all
n > 7, but not for n = 6: . Ay, €5y, 5.
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Other symmetry types I.

he groups I, for which I'(5, n)-fulleroids exist for all
n > 6. Dsqy D3day Dons D5y D3, Do, 64 €30, G20y Gap, 63,
Co, Cs, C;y 61

The groups T, for which T'(5, n)-fulleroids exist for all
n > 7, but not for n = 6: . Ay, €5y, 5.

The groups T, for which T'(5, n)-fulleroids exist if and
onlyif n 25 (mod 10): %oy, % (and 7).
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Other symmetry types I.

he groups I', for which I'(5, n)-fulleroids exist for all
n > 6. Dsqy D3as Dony sy I3, D2, S5 €30y Gov, Gon, €3,
%2; (gs, Cgi; (gl-

The groups T, for which T'(5, n)-fulleroids exist for all
n > 7, but not for n = 6: .Ayg, 65, 6.

The groups T, for which T'(5, n)-fulleroids exist if and
onlyif n 25 (mod 10): %oy, % (and 7).

The groups I, for which I'(5, n)-fulleroids exist if and
only if n 25,10 (mod 15): %5y, €3),-
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Other symmetry types I.

he groups I', for which I'(5, n)-fulleroids exist for all
n > 6. Dsq, D3q, Dony D5y D3, D2y S6, 630y Govy G2n, 63,
%2; (gs, Cgi; (gl-

The groups I, for which I'(5, n)-fulleroids exist for all
n > 7, but not for n = 6: .S, €5y, 65.

The groups T, for which T'(5, n)-fulleroids exist if and
onlyif n 25 (mod 10): %oy, % (and 7).

The groups T, for which T'(5, n)-fulleroids exist if and
only if n 25,10 (mod 15): %5y, €3),-
Z5,(5,n)-fulleroids exist if and only if n £ 5,10, 15, 20
(mod 25).
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Other symmetry types I.

he groups I', for which I'(5, n)-fulleroids exist for all
n > 6. Dsqy D3as Dony sy I3, D2, S5 €30y Gov, Gon, €3,
%2; (gs, Cgi; (gl-

The groups T, for which T'(5, n)-fulleroids exist for all
n > 7, but not for n = 6: .Ayg, 65, 6.

The groups T, for which T'(5, n)-fulleroids exist if and
onlyif n 25 (mod 10): %oy, % (and 7).

The groups T, for which T'(5, n)-fulleroids exist if and
only if n 25,10 (mod 15): %5y, €3),-
Z5,(5,n)-fulleroids exist if and only if n £ 5,10, 15, 20
(mod 25).

%5 (5, n)-fulleroids exist if and only If n £ 5,10, 15, 20
(mod 25) and n # 6.
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Other symmetry types Il.

he groups I, for which I'(5, n)-fulleroids exist if and
only if n iIs a multiple of a number m (m = 4 or m > 6):
gmd’ @m, me; Cgmfu; Cgm-

l Symmetry of Fulleroids — p.10/18



Other symmetry types Il.

he groups I, for which I'(5, n)-fulleroids exist if and
only if n iIs a multiple of a number m (m = 4 or m > 6):
gmd’ 977%1 me, Cgmfm CKm-

The groups T, for which there is one more case of
nonexistence in addition — if m Is divisible by 5, then
I'(5,n)-fulleroids exist if and only if » Is a multiple of 5m:
@mh’ Cgfmh-
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Other symmetry types Il.

he groups I', for which I'(5, n)-fulleroids exist if and
only if n Is a multiple of a number m (m = 4 or m > 6):
@md’ 977%1 y?m, Cgmfm Cgm-

The groups T, for which there is one more case of
nonexistence In addition — if m Is divisible by 5, then
I'(5,n)-fulleroids exist if and only if » Is a multiple of 5m:
@mfu Cgmh-

One more exception: There are no fullerenes with .5,
G6vy Ggn, NOIr 65 SYymmetry.
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Proving nonexistence

Il the cases of nonexistence are either the fullerenes
case, or the case of fulleroids with multi-pentagonal

faces.
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Proving nonexistence

l| the cases of nonexistence are either the fullerenes
case, or the case of fulleroids with multi-pentagonal

faces.

K.: Let P be a cubic convex polyhedron such that all
faces are multi-pentagons, i.e. the size of each face is
a multiple of five. Then there exists an
orientation-preserving homomorphism v : P — D,
where D denotes a regular dodecahedron.
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Proving nonexistence

- Let P be a cubic convex polyhedron such that all its
faces are multi-pentagons and let ¥ : P — D be an
orientation-preserving homomorphism. If o € I'(P) IS a
symmetry of P, then V oy : P — D is also an
orientation-preserving homomorphism, moreover, the
symmetry ¢ of P uniquely determines a symmetry

U(p) of D once ¥ Is fixed.
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Proving nonexistence

K.: Let P be a cubic convex polyhedron such that all its
faces are multi-pentagons and let ¥ : P — D be an
orientation-preserving homomorphism. If o € I'(P) IS a
symmetry of P, then Vo : P — D Is also an
orientation-preserving homomorphism, moreover, the
symmetry ¢ of P uniquely determines a symmetry
U(p) of D once ¥ is fixed.

K.: Let P be a cubic convex polyhedron such that all its
faces are multi-pentagons. Then there exists a
homomorphism ¥ : I'(P) — .#,, where I'(P) is the
symmetry group of P and .#, denotes the symmetry
group of a regular dodecahedron D.
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Proving nonexistence

t P be a cubic convex polyhedron such that the
sizes of all its faces are odd multiples of five. Then the
symmetry group I'(P) does not contain the group .4
as a subgroup. Therefore, there is no cubic convex
polyhedron such that the sizes of all its faces are odd
multiples of five with the symmetry group ., %4, Or
Ty
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Proving nonexistence

t P be a cubic convex polyhedron such that all its
faces are multi-pentagons and none of the face sizes
IS divisible by three. Then the symmetry group I'(P)
does not contain the group %3, as a subgroup.
Therefore, there is no cubic convex polyhedron P such
that all its faces are multi-pentagons, none of the face
sizes Is divisible by three, and the symmetry group of
P IS 63y, OF D3,.
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Proving nonexistence

t P be a cubic convex polyhedron such that all its
faces are multi-pentagons and none of the face sizes
IS divisible by 25. Then the symmetry group I'(P) does
not contain the group %5, as a subgroup. Therefore,
there Is no cubic convex polyhedron P such that all its
faces are multi-pentagons, none of the face sizes Is
divisible by 25, and the symmetry group of P Is €, or
Dsh,.-

. Symmetry of Fulleroids — p.15/18



Examples

construction of a graph of a 2,,(5, 9)-fulleroid:
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Examples

construction of a graph of a 2,,(5, 9)-fulleroid:

generating infinite series of examples:

n n+k
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Examples

construction of a graph of a 2,(5,9)-fulleroid:

ZANGYZ/AN
SEDS
N\ @ @
%L C@ﬂs Cgl
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Thank you for your attention!
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