Symmetry of Fulleroids

František Kardoš Institute of Mathematics P. J. Šafárik University, Košice

frantisek.kardos@upjs.sk

Fullerenes and Fullerene Graphs

Fullerene is a 3-regular (or cubic) carbon molecule, where atoms are arranged in pentagons and hexagons.

Fullerenes and Fullerene Graphs

- Fullerene is a 3-regular (or cubic) carbon molecule, where atoms are arranged in pentagons and hexagons.
- Fullerene graph is a planar, 3-regular and 3-connected graph, twelve of whose faces are pentagons and any remaining faces are hexagons.

Fulleroids

 Fulleroid is a cubic convex polyhedron with faces of size 5 or greater.

Fulleroids

- Fulleroid is a cubic convex polyhedron with faces of size 5 or greater.
- only pentagons and hexagons
 fullerenes

- Fulleroid is a cubic convex polyhedron with faces of size 5 or greater.
- only pentagons and hexagons
 fullerenes
- only pentagons and *n*-gons $\Rightarrow (5, n)$ -fulleroids

Symmetry of convex polyhedra

rotations, reflections, point inversion...

rotations, reflections, point inversion... symmetry group of a convex polyhedron

rotations, reflections, point inversion... symmetry group of a convex polyhedron

Possible symmetry groups:

- icosahedral: \mathscr{I}_h , \mathscr{I}
- octahedral: \mathcal{O}_h , \mathcal{O}
- tetrahedral: \mathcal{T}_h , \mathcal{T}_d , \mathcal{T}
- cylindrical: \mathscr{D}_{nh} , \mathscr{D}_{nd} , \mathscr{D}_n $(n \ge 2)$
- **skewed:** \mathscr{S}_{2n} , \mathscr{C}_{nh} $(n \geq 2)$
- pyramidal: \mathscr{C}_{nv} , \mathscr{C}_n $(n \geq 2)$
- low symmetry: \mathscr{C}_s , \mathscr{C}_i , \mathscr{C}_1

Fowler and al. (1993): Possible symmetry: only 28 out of 36 groups Babić, Klein and Sah (1993): All fullerenes with up to 70 vertices classified according to the symmetry group Fowler and Manolopoulos (1995): Symmetry of all fullerenes with up to 100 vertices; the smallest Γ -fullerene for each symmetry group Γ ; the smallest **Γ-fullerene** without adjacent pentagons for each symmetry group Γ Graver (2001): Catalogue of all fullerenes with ten or more symmetries

Dress and Brinkmann (1996): The smallest $\mathscr{I}_h(5,7)$ and $\mathscr{I}(5,7)$ -fulleroids are unique **Delgado Friedrichs and Deza (2000):** $\mathscr{I}_h(5,n)$ -fulleroids for n = 8, 9, 10, 12, 14 and 15 **Jendrol' and Trenkler (2001):** $\mathscr{I}(5,n)$ -fulleroids for all $n \ge 8$

K.: $\mathscr{I}(5, n)$ -fulleroids for all $n \geq 7$

Jendrol' and K. (to appear): Let $n \ge 7$. Then $\mathscr{O}_h(5, n)$ -fulleroids exist if and only if (i) $n \equiv 0 \pmod{60}$ or (ii) $n \equiv 0 \pmod{4}$ and $n \not\equiv 0 \pmod{5}$. **K.:** Analogous claim for the group \mathscr{O} .

Tetrahedral fulleroids

K. (to appear): Let $n \ge 6$. Then $\mathscr{T}_d(5, n)$ -fulleroids exist if and only if $n \not\equiv 5 \pmod{10}$. $\mathscr{T}(5, n)$ - and $\mathscr{T}_h(5, n)$ -fulleroids exist for all $n \ge 6$.

The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist for all $n \geq 6$: \mathcal{D}_{5d} , \mathcal{D}_{3d} , \mathcal{D}_{2h} , \mathcal{D}_5 , \mathcal{D}_3 , \mathcal{D}_2 , \mathcal{S}_6 , \mathcal{C}_{3v} , \mathcal{C}_{2v} , \mathcal{C}_{2h} , \mathcal{C}_3 , \mathcal{C}_2 , \mathcal{C}_s , \mathcal{C}_i , \mathcal{C}_1 .

The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist for all $n \geq 6$: \mathscr{D}_{5d} , \mathscr{D}_{3d} , \mathscr{D}_{2h} , \mathscr{D}_5 , \mathscr{D}_3 , \mathscr{D}_2 , \mathscr{S}_6 , \mathscr{C}_{3v} , \mathscr{C}_{2v} , \mathscr{C}_{2h} , \mathscr{C}_3 , \mathscr{C}_2 , \mathscr{C}_s , \mathscr{C}_i , \mathscr{C}_1 . The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist for all $n \geq 7$, but not for n = 6: \mathscr{S}_{10} , \mathscr{C}_{5v} , \mathscr{C}_5 . The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist for all $n \geq 6$: \mathscr{D}_{5d} , \mathscr{D}_{3d} , \mathscr{D}_{2h} , \mathscr{D}_5 , \mathscr{D}_3 , \mathscr{D}_2 , \mathscr{S}_6 , \mathscr{C}_{3v} , \mathscr{C}_{2v} , \mathscr{C}_{2h} , \mathscr{C}_3 , \mathscr{C}_2 , \mathscr{C}_s , \mathscr{C}_i , \mathscr{C}_1 . The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist for all $n \geq 7$, but not for n = 6: \mathscr{S}_{10} , \mathscr{C}_{5v} , \mathscr{C}_5 . The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist if and only if $n \not\equiv 5 \pmod{10}$: \mathscr{D}_{2d} , \mathscr{S}_4 (and \mathscr{T}_d). The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist for all $n \ge 6$: \mathscr{D}_{5d} , \mathscr{D}_{3d} , \mathscr{D}_{2h} , \mathscr{D}_5 , \mathscr{D}_3 , \mathscr{D}_2 , \mathscr{S}_6 , \mathscr{C}_{3v} , \mathscr{C}_{2v} , \mathscr{C}_{2h} , \mathscr{C}_3 , \mathscr{C}_2 , \mathscr{C}_s , \mathscr{C}_i , \mathscr{C}_1 . The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist for all $n \ge 7$, but not for n = 6: \mathscr{S}_{10} , \mathscr{C}_{5v} , \mathscr{C}_5 . The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist if and only if $n \not\equiv 5 \pmod{10}$: \mathscr{D}_{2d} , \mathscr{S}_4 (and \mathscr{T}_d). The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist if and only if $n \not\equiv 5$, 10 (mod 15): \mathscr{D}_{3h} , \mathscr{C}_{3h} .

The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist for all $n \geq 6$: $\mathcal{D}_{5d}, \mathcal{D}_{3d}, \mathcal{D}_{2h}, \mathcal{D}_5, \mathcal{D}_3, \mathcal{D}_2, \mathcal{S}_6, \mathcal{C}_{3v}, \mathcal{C}_{2v}, \mathcal{C}_{2h}, \mathcal{C}_3,$ $C_2, C_3, C_j, C_1.$ The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist for all $n \geq 7$, but not for n = 6: $\mathscr{S}_{10}, \mathscr{C}_{5v}, \mathscr{C}_5$. The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist if and only if $n \not\equiv 5 \pmod{10}$: \mathscr{D}_{2d} , \mathscr{S}_4 (and \mathscr{T}_d). The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist if and only if $n \not\equiv 5, 10 \pmod{15}$: $\mathscr{D}_{3h}, \mathscr{C}_{3h}$. $\mathscr{D}_{5h}(5,n)$ -fulleroids exist if and only if $n \neq 5, 10, 15, 20$ (mod 25).

The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist for all $n \geq 6$: $\mathcal{D}_{5d}, \mathcal{D}_{3d}, \mathcal{D}_{2h}, \mathcal{D}_5, \mathcal{D}_3, \mathcal{D}_2, \mathcal{S}_6, \mathcal{C}_{3v}, \mathcal{C}_{2v}, \mathcal{C}_{2h}, \mathcal{C}_3,$ $C_2, C_3, C_i, C_1.$ The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist for all $n \geq 7$, but not for n = 6: $\mathscr{S}_{10}, \mathscr{C}_{5v}, \mathscr{C}_5$. The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist if and only if $n \not\equiv 5 \pmod{10}$: \mathscr{D}_{2d} , \mathscr{S}_4 (and \mathscr{T}_d). The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist if and only if $n \not\equiv 5, 10 \pmod{15}$: $\mathscr{D}_{3h}, \mathscr{C}_{3h}$. $\mathscr{D}_{5h}(5,n)$ -fulleroids exist if and only if $n \neq 5, 10, 15, 20$ (mod 25). $\mathscr{C}_{5h}(5,n)$ -fulleroids exist if and only if $n \neq 5, 10, 15, 20$

The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist if and only if n is a multiple of a number m (m = 4 or $m \ge 6$): $\mathscr{D}_{md}, \mathscr{D}_m, \mathscr{S}_{2m}, \mathscr{C}_{mv}, \mathscr{C}_m$. The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist if and only if n is a multiple of a number m (m = 4 or $m \ge 6$): $\mathscr{D}_{md}, \mathscr{D}_m, \mathscr{S}_{2m}, \mathscr{C}_{mv}, \mathscr{C}_m$. The groups Γ , for which there is one more case of nonexistence in addition – if m is divisible by 5, then $\Gamma(5, n)$ -fulleroids exist if and only if n is a multiple of 5m: $\mathscr{D}_{mh}, \mathscr{C}_{mh}$. The groups Γ , for which $\Gamma(5, n)$ -fulleroids exist if and only if n is a multiple of a number m (m = 4 or $m \ge 6$): $\mathscr{D}_{md}, \mathscr{D}_m, \mathscr{S}_{2m}, \mathscr{C}_{mv}, \mathscr{C}_m$. The groups Γ , for which there is one more case of nonexistence in addition – if m is divisible by 5, then $\Gamma(5, n)$ -fulleroids exist if and only if n is a multiple of 5m: $\mathscr{D}_{mh}, \mathscr{C}_{mh}$.

One more exception: There are no fullerenes with \mathscr{S}_{12} , \mathscr{C}_{6v} , \mathscr{C}_{6h} , nor \mathscr{C}_{6} symmetry.

All the cases of nonexistence are either the fullerenes case, or the case of fulleroids with multi-pentagonal faces.

All the cases of nonexistence are either the fullerenes case, or the case of fulleroids with multi-pentagonal faces.

K.: Let *P* be a cubic convex polyhedron such that all faces are multi-pentagons, i.e. the size of each face is a multiple of five. Then there exists an orientation-preserving homomorphism $\Psi : P \rightarrow D$, where *D* denotes a regular dodecahedron.

K.: Let *P* be a cubic convex polyhedron such that all its faces are multi-pentagons and let $\Psi : P \to D$ be an orientation-preserving homomorphism. If $\varphi \in \Gamma(P)$ is a symmetry of *P*, then $\Psi \circ \varphi : P \to D$ is also an orientation-preserving homomorphism, moreover, the symmetry φ of *P* uniquely determines a symmetry $\overline{\Psi}(\varphi)$ of *D* once Ψ is fixed.

k.: Let *P* be a cubic convex polyhedron such that all its faces are multi-pentagons and let $\Psi : P \to D$ be an orientation-preserving homomorphism. If $\varphi \in \Gamma(P)$ is a symmetry of *P*, then $\Psi \circ \varphi : P \to D$ is also an orientation-preserving homomorphism, moreover, the symmetry φ of *P* uniquely determines a symmetry $\overline{\Psi}(\varphi)$ of *D* once Ψ is fixed.

K.: Let *P* be a cubic convex polyhedron such that all its faces are multi-pentagons. Then there exists a homomorphism $\overline{\Psi} : \Gamma(P) \to \mathscr{I}_h$, where $\Gamma(P)$ is the symmetry group of *P* and \mathscr{I}_h denotes the symmetry group of a regular dodecahedron *D*.

Let *P* be a cubic convex polyhedron such that the sizes of all its faces are odd multiples of five. Then the symmetry group $\Gamma(P)$ does not contain the group \mathscr{S}_4 as a subgroup. Therefore, there is no cubic convex polyhedron such that the sizes of all its faces are odd multiples of five with the symmetry group \mathscr{S}_4 , \mathscr{D}_{2d} , or \mathscr{T}_d .

Let *P* be a cubic convex polyhedron such that all its faces are multi-pentagons and none of the face sizes is divisible by three. Then the symmetry group $\Gamma(P)$ does not contain the group \mathscr{C}_{3h} as a subgroup. Therefore, there is no cubic convex polyhedron *P* such that all its faces are multi-pentagons, none of the face sizes is divisible by three, and the symmetry group of *P* is \mathscr{C}_{3h} or \mathscr{D}_{3h} . Let *P* be a cubic convex polyhedron such that all its faces are multi-pentagons and none of the face sizes is divisible by 25. Then the symmetry group $\Gamma(P)$ does not contain the group \mathscr{C}_{5h} as a subgroup. Therefore, there is no cubic convex polyhedron *P* such that all its faces are multi-pentagons, none of the face sizes is divisible by 25, and the symmetry group of *P* is \mathscr{C}_{5h} or \mathscr{D}_{5h} .

Examples

Examples

construction of a graph of a $\mathcal{D}_{2h}(5,9)$ -fulleroid:

generating infinite series of examples:

n+k

n+k

Examples

Thank you for your attention!