Symmetry of Fulleroids

František Kardoš

Institute of Mathematics
P. J. Šafárik University, Košice
frantisek.kardos@upjs.sk

Fullerenes and Fullerene Graphs

- Fullerene is a 3-regular (or cubic) carbon molecule, where atoms are arranged in pentagons and hexagons.

Fullerenes and Fullerene Graphs

- Fullerene is a 3-regular (or cubic) carbon molecule, where atoms are arranged in pentagons and hexagons.
- Fullerene graph is a planar, 3 -regular and 3-connected graph, twelve of whose faces are pentagons and any
 remaining faces are hexagons.

Fulleroids

- Fulleroid is a cubic convex polyhedron with faces of size 5 or greater.

Fulleroids

- Fulleroid is a cubic convex polyhedron with faces of size 5 or greater.
- only pentagons and hexagons \Rightarrow fullerenes

Fulleroids

- Fulleroid is a cubic convex polyhedron with faces of size 5 or greater.
- only pentagons and hexagons \Rightarrow fullerenes
- only pentagons and n-gons

$\Rightarrow(5, n)$-fulleroids

Symmetry of convex polyhedra

rotations, reflections, point inversion. . .

Symmetry of convex polyhedra

rotations, reflections, point inversion. . . symmetry group of a convex polyhedron

Symmetry of convex polyhedra

rotations, reflections, point inversion. . . symmetry group of a convex polyhedron

Possible symmetry groups:

- icosahedral: $\mathscr{I}_{h}, \mathscr{I}$
- octahedral: $\mathscr{O}_{h}, \mathscr{O}$

■ tetrahedral: $\mathscr{T}_{h}, \mathscr{T}_{d}, \mathscr{T}$

- cylindrical: $\mathscr{D}_{n h}, \mathscr{D}_{n d}, \mathscr{D}_{n}(n \geq 2)$
- skewed: $\mathscr{S}_{2 n}, \mathscr{C}_{n h}(n \geq 2)$

- pyramidal: $\mathscr{C}_{n v}, \mathscr{C}_{n}(n \geq 2)$
- low symmetry: $\mathscr{C}_{s}, \mathscr{C}_{i}, \mathscr{C}_{1}$

Symmetry of fullerenes

Fowler and al. (1993): Possible symmetry: only 28 out of 36 groups
Babić, Klein and Sah (1993): All fullerenes with up to 70 vertices classified according to the symmetry group Fowler and Manolopoulos (1995): Symmetry of all fullerenes with up to 100 vertices; the smallest Γ-fullerene for each symmetry group Γ; the smallest Γ-fullerene without adjacent pentagons for each symmetry group Γ
Graver (2001): Catalogue of all fullerenes with ten or more symmetries

Icosahedral fulleroids

Dress and Brinkmann (1996): The smallest $\mathscr{I}_{h}(5,7)$ and $\mathscr{I}(5,7)$-fulleroids are unique Delgado Friedrichs and Deza (2000):
$\mathscr{I}_{h}(5, n)$-fulleroids for $n=8,9,10,12,14$ and 15 Jendrol' and Trenkler (2001): $\mathscr{I}(5, n)$-fulleroids for all $n \geq 8$
K.: $\mathscr{I}(5, n)$-fulleroids for all $n \geq 7$

Octahedral fulleroids

Jendrol' and K. (to appear): Let $n \geq 7$. Then $\mathscr{O}_{h}(5, n)$-fulleroids exist if and only if
(i) $n \equiv 0 \quad(\bmod 60)$ or
(ii) $n \equiv 0 \quad(\bmod 4)$ and $n \not \equiv 0 \quad(\bmod 5)$.
K.: Analogous claim for the group \mathscr{O}.

Tetrahedral fulleroids

K. (to appear): Let $n \geq 6$. Then $\mathscr{T}_{d}(5, n)$-fulleroids exist if and only if $n \not \equiv 5(\bmod 10)$. $\mathscr{T}(5, n)$ - and $\mathscr{T}_{h}(5, n)$-fulleroids exist for all $n \geq 6$.

Other symmetry types I.

The groups Γ, for which $\Gamma(5, n)$-fulleroids exist for all $n \geq 6: \mathscr{D}_{5 d}, \mathscr{D}_{3 d}, \mathscr{D}_{2 h}, \mathscr{D}_{5}, \mathscr{D}_{3}, \mathscr{D}_{2}, \mathscr{S}_{6}, \mathscr{C}_{3 v}, \mathscr{C}_{2 v}, \mathscr{C}_{2 h}, \mathscr{C}_{3}$, $\mathscr{C}_{2}, \mathscr{C}_{s}, \mathscr{C}_{i}, \mathscr{C}_{1}$.

Other symmetry types I.

The groups Γ, for which $\Gamma(5, n)$-fulleroids exist for all $n \geq 6: \mathscr{D}_{5 d}, \mathscr{D}_{3 d}, \mathscr{D}_{2 h}, \mathscr{D}_{5}, \mathscr{D}_{3}, \mathscr{D}_{2}, \mathscr{S}_{6}, \mathscr{C}_{3 v}, \mathscr{C}_{2 v}, \mathscr{C}_{2 h}, \mathscr{C}_{3}$, $\mathscr{C}_{2}, \mathscr{C}_{s}, \mathscr{C}_{i}, \mathscr{C}_{1}$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist for all $n \geq 7$, but not for $n=6$: $\mathscr{S}_{10}, \mathscr{C}_{5 v}, \mathscr{C}_{5}$.

Other symmetry types I.

The groups Γ, for which $\Gamma(5, n)$-fulleroids exist for all $n \geq 6: \mathscr{D}_{5 d}, \mathscr{D}_{3 d}, \mathscr{D}_{2 h}, \mathscr{D}_{5}, \mathscr{D}_{3}, \mathscr{D}_{2}, \mathscr{S}_{6}, \mathscr{C}_{3 v}, \mathscr{C}_{2 v}, \mathscr{C}_{2 h}, \mathscr{C}_{3}$, $\mathscr{C}_{2}, \mathscr{C}_{s}, \mathscr{C}_{i}, \mathscr{C}_{1}$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist for all $n \geq 7$, but not for $n=6: \mathscr{S}_{10}, \mathscr{C}_{5 v}, \mathscr{C}_{5}$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist if and only if $n \not \equiv 5(\bmod 10): \mathscr{D}_{2 d}, \mathscr{S}_{4}\left(\right.$ and $\left.\mathscr{T}_{d}\right)$.

Other symmetry types I.

The groups Γ, for which $\Gamma(5, n)$-fulleroids exist for all $n \geq 6: \mathscr{D}_{5 d}, \mathscr{D}_{3 d}, \mathscr{D}_{2 h}, \mathscr{D}_{5}, \mathscr{D}_{3}, \mathscr{D}_{2}, \mathscr{S}_{6}, \mathscr{C}_{3 v}, \mathscr{C}_{2 v}, \mathscr{C}_{2 h}, \mathscr{C}_{3}$, $\mathscr{C}_{2}, \mathscr{C}_{s}, \mathscr{C}_{i}, \mathscr{C}_{1}$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist for all $n \geq 7$, but not for $n=6: \mathscr{S}_{10}, \mathscr{C}_{5 v}, \mathscr{C}_{5}$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist if and only if $n \not \equiv 5(\bmod 10): \mathscr{D}_{2 d}, \mathscr{S}_{4}\left(\right.$ and $\left.\mathscr{T}_{d}\right)$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist if and only if $n \not \equiv 5,10(\bmod 15): \mathscr{D}_{3 h}, \mathscr{C}_{3 h}$.

Other symmetry types I.

The groups Γ, for which $\Gamma(5, n)$-fulleroids exist for all $n \geq 6: \mathscr{D}_{5 d}, \mathscr{D}_{3 d}, \mathscr{D}_{2 h}, \mathscr{D}_{5}, \mathscr{D}_{3}, \mathscr{D}_{2}, \mathscr{S}_{6}, \mathscr{C}_{3 v}, \mathscr{C}_{2 v}, \mathscr{C}_{2 h}, \mathscr{C}_{3}$, $\mathscr{C}_{2}, \mathscr{C}_{s}, \mathscr{C}_{i}, \mathscr{C}_{1}$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist for all $n \geq 7$, but not for $n=6: \mathscr{S}_{10}, \mathscr{C}_{5 v}, \mathscr{C}_{5}$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist if and only if $n \not \equiv 5(\bmod 10): \mathscr{D}_{2 d}, \mathscr{S}_{4}\left(\right.$ and $\left.\mathscr{T}_{d}\right)$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist if and only if $n \not \equiv 5,10(\bmod 15): \mathscr{D}_{3 h}, \mathscr{C}_{3 h}$.
$\mathscr{D}_{5 h}(5, n)$-fulleroids exist if and only if $n \not \equiv 5,10,15,20$ (mod 25).

Other symmetry types I.

The groups Γ, for which $\Gamma(5, n)$-fulleroids exist for all $n \geq 6: \mathscr{D}_{5 d}, \mathscr{O}_{3 d}, \mathscr{D}_{2 h}, \mathscr{D}_{5}, \mathscr{D}_{3}, \mathscr{D}_{2}, \mathscr{S}_{6}, \mathscr{C}_{3 v}, \mathscr{C}_{2 v}, \mathscr{C}_{2 h}, \mathscr{C}_{3}$, $\mathscr{C}_{2}, \mathscr{C}_{s}, \mathscr{C}_{i}, \mathscr{C}_{1}$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist for all $n \geq 7$, but not for $n=6: \mathscr{S}_{10}, \mathscr{C}_{5 v}, \mathscr{C}_{5}$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist if and only if $n \not \equiv 5(\bmod 10): \mathscr{D}_{2 d}, \mathscr{S}_{4}\left(\right.$ and $\left.\mathscr{T}_{d}\right)$.
The groups Γ, for which $\Gamma(5, n)$-fulleroids exist if and only if $n \not \equiv 5,10(\bmod 15): \mathscr{D}_{3 h}, \mathscr{C}_{3 h}$.
$\mathscr{D}_{5 h}(5, n)$-fulleroids exist if and only if $n \not \equiv 5,10,15,20$ (mod 25).
$\mathscr{C}_{5 h}(5, n)$-fulleroids exist if and only if $n \not \equiv 5,10,15,20$ $(\bmod 25)$ and $n \neq 6$.

Other symmetry types II.

The groups Γ, for which $\Gamma(5, n)$-fulleroids exist if and only if n is a multiple of a number $m(m=4$ or $m \geq 6)$: $\mathscr{D}_{m d}, \mathscr{D}_{m}, \mathscr{S}_{2 m}, \mathscr{C}_{m v}, \mathscr{C}_{m}$.

Other symmetry types II.

The groups Γ, for which $\Gamma(5, n)$-fulleroids exist if and only if n is a multiple of a number $m(m=4$ or $m \geq 6)$: $\mathscr{D}_{m d}, \mathscr{D}_{m}, \mathscr{S}_{2 m}, \mathscr{C}_{m v}, \mathscr{C}_{m}$.
The groups Γ, for which there is one more case of nonexistence in addition - if m is divisible by 5 , then $\Gamma(5, n)$-fulleroids exist if and only if n is a multiple of 5 m : $\mathscr{D}_{m h}, \mathscr{C}_{m h}$.

Other symmetry types II.

The groups Γ, for which $\Gamma(5, n)$-fulleroids exist if and only if n is a multiple of a number $m(m=4$ or $m \geq 6)$: $\mathscr{D}_{m d}, \mathscr{D}_{m}, \mathscr{S}_{2 m}, \mathscr{C}_{m v}, \mathscr{C}_{m}$.
The groups Γ, for which there is one more case of nonexistence in addition - if m is divisible by 5 , then $\Gamma(5, n)$-fulleroids exist if and only if n is a multiple of 5 m : $\mathscr{D}_{m h}, \mathscr{C}_{m h}$.
One more exception: There are no fullerenes with \mathscr{S}_{12}, $\mathscr{C}_{6 v}, \mathscr{C}_{6 h}$, nor \mathscr{C}_{6} symmetry.

Proving nonexistence

All the cases of nonexistence are either the fullerenes case, or the case of fulleroids with multi-pentagonal faces.

Proving nonexistence

All the cases of nonexistence are either the fullerenes case, or the case of fulleroids with multi-pentagonal faces.
K.: Let P be a cubic convex polyhedron such that all faces are multi-pentagons, i.e. the size of each face is a multiple of five. Then there exists an orientation-preserving homomorphism $\Psi: P \rightarrow D$, where D denotes a regular dodecahedron.

Proving nonexistence

K.: Let P be a cubic convex polyhedron such that all its faces are multi-pentagons and let $\Psi: P \rightarrow D$ be an orientation-preserving homomorphism. If $\varphi \in \Gamma(P)$ is a symmetry of P, then $\Psi \circ \varphi: P \rightarrow D$ is also an orientation-preserving homomorphism, moreover, the symmetry φ of P uniquely determines a symmetry $\bar{\Psi}(\varphi)$ of D once Ψ is fixed.

Proving nonexistence

K.: Let P be a cubic convex polyhedron such that all its faces are multi-pentagons and let $\Psi: P \rightarrow D$ be an orientation-preserving homomorphism. If $\varphi \in \Gamma(P)$ is a symmetry of P, then $\Psi \circ \varphi: P \rightarrow D$ is also an orientation-preserving homomorphism, moreover, the symmetry φ of P uniquely determines a symmetry $\bar{\Psi}(\varphi)$ of D once Ψ is fixed.
K.: Let P be a cubic convex polyhedron such that all its faces are multi-pentagons. Then there exists a homomorphism $\bar{\Psi}: \Gamma(P) \rightarrow \mathscr{I}_{h}$, where $\Gamma(P)$ is the symmetry group of P and \mathscr{I}_{h} denotes the symmetry group of a regular dodecahedron D.

Proving nonexistence

Let P be a cubic convex polyhedron such that the sizes of all its faces are odd multiples of five. Then the symmetry group $\Gamma(P)$ does not contain the group \mathscr{S}_{4} as a subgroup. Therefore, there is no cubic convex polyhedron such that the sizes of all its faces are odd multiples of five with the symmetry group $\mathscr{S}_{4}, \mathscr{D}_{2 d}$, or \mathscr{T}_{d}.

Proving nonexistence

Let P be a cubic convex polyhedron such that all its faces are multi-pentagons and none of the face sizes is divisible by three. Then the symmetry group $\Gamma(P)$ does not contain the group $\mathscr{C}_{3 h}$ as a subgroup. Therefore, there is no cubic convex polyhedron P such that all its faces are multi-pentagons, none of the face sizes is divisible by three, and the symmetry group of P is $\mathscr{C}_{3 h}$ or $\mathscr{D}_{3 h}$.

Proving nonexistence

Let P be a cubic convex polyhedron such that all its faces are multi-pentagons and none of the face sizes is divisible by 25 . Then the symmetry group $\Gamma(P)$ does not contain the group $\mathscr{C}_{5 h}$ as a subgroup. Therefore, there is no cubic convex polyhedron P such that all its faces are multi-pentagons, none of the face sizes is divisible by 25 , and the symmetry group of P is $\mathscr{C}_{5 h}$ or $\mathscr{D}_{5 h}$.

Examples

construction of a graph of a $\mathscr{D}_{2 h}(5,9)$-fulleroid:

Examples

construction of a graph of a $\mathscr{D}_{2 h}(5,9)$-fulleroid:

generating infinite series of examples:

Examples

construction of a graph of a $\mathscr{D}_{2 h}(5,9)$-fulleroid:

changing the symmetry group:

Thank you for your attention!

