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Fullereneis a carbon molecule, where atoms are
arranged in pentagons and hexagons.
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Fullereneis a carbon molecule, where atoms are
arranged in pentagons and hexagons.

Carbon molecule?

There are two well-known forms of carbon:
diamond and graphite.

In diamond all atoms are 4-valent and form a
3-dimensional grid.

In graphite all atoms are 3-valent. They form flat
sheets with hexagonal structure.
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In 80s, certain experiments predicted the existence of
molecules with the exact mass of sixty or seventy or
more carbon atoms. In 1985, Harold Kroto (then of the
University of Sussex, now of Florida State University),
James R. Heath, Sean O’Brien, Robert Curl and Richard
Smalley, from Rice University, discoveredfand

shortly after came to discover the fullerenes.

Kroto, Curl, and Smalley were awarded the 1996 Nobel
Prize in Chemistry for their roles in the discovery of this
class of compounds.
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The most common and the mog
known fullerene Is the Buckmin-
sterfullerene G. It is the small-
est fullerene in which no two pen
tagons share an edge. It wea
named after Richard Buckminste
Fuller, a noted architect who pop
ularized the geodesic dome. Latg

the name got shortened to buck
pball.
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The structure of ¢ IS a truncated
icosahedron. It resembles a rou
soccer ball of the type made o
hexagons and pentagons.

The pattern of soccer ball wit
white hexagons and black pe
tagons appeared first in 70s. In th:
times no one suspected it could b
a model for a carbon molecule...
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The bUCkybaI | Ceo

A truncated icosahedron and a soccer ball
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Fullerene graphs a planar,
3-regular and 3-connected graph,

the faces of which are only

e S \
pentagons and hexagons. ’QQ?
N
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Fullerene graphs a planar,
3-regular and 3-connected graph,
the faces of which are only
pentagons and hexagons.

i
Steinitz’s Theorem: A grapty is ’.Q?
polytopal (e.g. isomorphic to the \0
graph of a convex polyhedron) if

and only If G Is planar and

3-connected.
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Fullerene graphs a planar,

3-regular and 3-connected graph,

the faces of which are only
pentagons and hexagons.

Steinitz's Theorem: A grapty is

polytopal (e.g. isomorphic to the
graph of a convex polyhedron) if

and only If G Is planar and

3-connected.

Whitney’s Theorem: Planar

3-connected (
can be embec

nolytopal) graphs
ded in the plane

essentially on

y one way.

Fulle
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Fullerene graphs

Let the number of vertices, edges, pentagons, and
hexagons of a fullerene graghbe denoted by, ¢, s,
and fs, respectively.
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Let the number of vertices, edges, pentagons, and
hexagons of a fullerene grajghbe denoted by, e, s,
and fs, respectively. It is easy to see that

Jv = 2e and S5fs + 6f¢ = 2e.
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Let the number of vertices, edges, pentagons, and
hexagons of a fullerene grajghbe denoted by, e, s,
and fs, respectively. It is easy to see that

Jv = 2e and S5fs + 6f¢ = 2e.

Euler’'s formula:
vt fs+fe=2+e
6v+6f;+6fs =12+ 4e + 2e¢
J5 =12

thus the number of pentagons in a fullerene graph is
exactly 12.
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The number of hexagons is not limited; If there gge
hexagons, then there aié + 3 f; edges an@0 + 2 f;
vertices. Therefore the number of vertices Is always even
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The number of hexagons is not limited; If there gge
hexagons, then there aié + 3 f; edges an@0 + 2 f;
vertices. Therefore the number of vertices Is always even
The smalles fullerene is the regular dodecahedron

(fs = 0). It has 20 vertices and 30 edges.
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The number of hexagons is not limited; If there gge
hexagons, then there aié + 3 f; edges an@0 + 2 f;
vertices. Therefore the number of vertices Is always even
The smalles fullerene is the regular dodecahedron
(fs = 0). It has 20 vertices and 30 edges.

For all f > 2 there exist fullerene graphs witfy
hexagons, but there is no fullerene graph fioe 1.
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The number of hexagons is not limited; If there gge
hexagons, then there aié + 3 f; edges an@0 + 2 f;
vertices. Therefore the number of vertices Is always even
The smalles fullerene is the regular dodecahedron
(fs = 0). It has 20 vertices and 30 edges.
For all f > 2 there exist fullerene graphs witfy
hexagons, but there is no fullerene graph fioe 1.
The number of (non-isomorphic) fullerene graphs with
vertices for some even numbets

20221242628, 30|40| 60 80 100

1, 0|11 2| 3 |40|1812|31924| 285913
[P. W. Fowler, D. E. Manolopoulos: Atlas of Fullerenes]
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A perfect matching in a graph is a set of pairwise
non-adjacent edges 6f which covers all vertices df.
A perfect matching is in chemistry calleckakulé
structure The more perfect matchings the fullerene

graph has, the more stable the fullerene molecule is
supposed to be.

Fullerenes and Fulleroids — p.10/24



A perfect matching in a graph is a set of pairwise
non-adjacent edges 6f which covers all vertices df.
A perfect matching is in chemistry calleckakulé
structure The more perfect matchings the fullerene
graph has, the more stable the fullerene molecule is
supposed to be.

Petersen’s Theorem: Any bridgeless connected cubic
graph has a perfect matching.
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A perfect matching in a graph is a set of pairwise
non-adjacent edges 6f which covers all vertices df.
A perfect matching is in chemistry calleckakulé
structure The more perfect matchings the fullerene
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A perfect matching in a graph is a set of pairwise
non-adjacent edges 6f which covers all vertices df.
A perfect matching is in chemistry calleckakulé
structure The more perfect matchings the fullerene
graph has, the more stable the fullerene molecule is
supposed to be.

Petersen’s Theorem: Any bridgeless connected cubic
graph has a perfect matching.

Every hamiltonian cubic graph is decomposable into 3
perfect matchings.

4 Colour Theorem: Any planar cubic graph is
decomposable into 3 perfect matchings.

Fullerenes and Fulleroids — p.10/24



Perfect matchingsin fullerenegraphs

The existence of perfect matchings can be ensured by
several graph properties.
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Perfect matchingsin fullerenegraphs

The existence of perfect matchings can be ensured by
several graph properties.

Graph(G Is 1-extendabléf every edge of7 appears in
some perfect matching.
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The existence of perfect matchings can be ensured by
several graph properties.

Graphd Is 1-extendabléf every edge ofz appears In
some perfect matching.

[L. Lovasz and M. D. Plummer] Every 1-extendable
graph withp vertices and edges contains at least

S + 2 perfect matchings.
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The existence of perfect matchings can be ensured by
several graph properties.

Graphd Is 1-extendabléf every edge ofz appears In
some perfect matching.

[L. Lovasz and M. D. Plummer] Every 1-extendable
graph withp vertices and edges contains at least

S + 2 perfect matchings.

Every fullerene graph with vertices contains at least
L + 2 different perfect matchings.
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Perfect matchingsin fullerenegraphs

Graphd is bicritical If G — u — v contains a perfect
matching for every pair of distinct vertices 6f

Graphd is cyclically k-edge-connected G cannot be
separated onto two components, each containing a cycle
by deletion of fewer thek edges.
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Graphd is bicritical If G — u — v contains a perfect
matching for every pair of distinct vertices 6f

Graphd is cyclically k-edge-connected G cannot be
separated onto two components, each containing a cycle
oy deletion of fewer therk edges.

L. Lovasz and M. D. Plummer] Every bicritical graph
with p vertices contains at leaSt+ 1 perfect matchings.

If G Is a non-bipartite, 3-regular, cyclically
4-edge-connected graph on an even number of vertices,
thendG Is bicritical.
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Graphd is bicritical If G — u — v contains a perfect
matching for every pair of distinct vertices 6f

Graphd is cyclically k-edge-connected G cannot be
separated onto two components, each containing a cycle
oy deletion of fewer therk edges.

L. Lovasz and M. D. Plummer] Every bicritical graph
with p vertices contains at leaSt+ 1 perfect matchings.

If G Is a non-bipartite, 3-regular, cyclically
4-edge-connected graph on an even number of vertices,
thendG Is bicritical.

[T. Doslic] Every fullerene graph is cyclically 4-edge
connected.
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Perfect matchingsin fullerenegraphs

[T. Doslic] Every fullerene graph is cyclically 5-edge
connected.
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The presence of symmetry elements in a fullerene
molecule can have important conseguences on its variou
chemical and physical properties. It is important to know
the possible symmetries of fullerene structures if the
structure of higher fullerene is to be discovered and
proved.

Given a fullerene, one can look feymmetry objects

such as mirror planes and rotational axes.

The reflections, rotations and ott®mmetriesltogether
form thesymmetry group
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Symmetry of convex polyhedra

Possible symmetry groups
(point groups:
m Icosahedral.#,, .
m octahedral?;, &
» tetrahedral.7;,, .7,
» cylindrical: 9,1, Y4, Y,
(n > 2)
» skewed..%,,, €., (n > 2)
= pyramidal:%,,,, €, (n > 2)
= low symmetry.%;, €;, ¢

Fullerenes and Fulleroids — p.15/24



Possible symmetry groups

(point groups:
Icosahedral.#;,, .¥
octahedral?,, 0
tetrahedral.7;,, 7, .7
cylindrical: 2,,1,, .4, 9,
()
skewed: %, €, (n > 2)  The regular dodeca-

pyramidal:¢,,,, ¢, (n > 2) hedron has.#, sym-
low symmetry. 6, €;, ¢ metry
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In fullerene graphs, all vertices are 3-valent and all faces
are pentagons or hexagons. Therefore, any symmetry
axis must be of 2-fold, 3-fold, 5-fold or 6-fold rotational
symmetry. This restriction reduces the list of possible
symmetry groups of fullerenes to 36 groups:

icosahedral.#,, .7 skewed: %12, Go1, 10,

tetrahedral-7,, 75, 7 Gon 6 Cans L, Con
cylindrical: %), Py, ™ PYramidal:@s,, Gs, G50,

QG, @5}“ @56{, @5, @%, %51 %31)1 ng, CKQU, ng
Dsa, D3y Doy, Pody, Do low symmetry:%,, €;, ¢
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P. W. Fowler, D. E. Manolopoulos, D. B. Redmond, and
R. P. Ryan] Whenever 5-fold or 6-fold rotational axis Is
present, a perpendicular 2-fold rotational axis Is forced.
This means thats;, ¢, €5, and.#; Ssymmetries occur
only as subgroups of fivefold dihedra¥y;,, &, &), or
icosahedral.¢;,, .#) groups; likewise&és, 66, 66, and

Y12 Symmetries occur only as subgroups of sixfold
dihedral groups s, Zsq, Zs). The list of possible
symmetries of fullerenes thus contains 28 groups.
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Symmetry of fullerenes

[Babic, Klein, Sah] Symmetry of all fullerenes with up to
/0 vertices
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[Babic, Klein, Sah] Symmetry of all fullerenes with up to
70 vertices

[Fowler and Manolopoulos] Symmetry of all fullerenes
with up to 100 vertices; the smalldstfullerene for each
symmetry groud’; the smallest'-fullerene without
adjacent pentagons for each symmetry group
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[Babic, Klein, Sah] Symmetry of all fullerenes with up to
70 vertices

[Fowler and Manolopoulos] Symmetry of all fullerenes
with up to 100 vertices; the smalldstfullerene for each
symmetry groud’; the smallest'-fullerene without
adjacent pentagons for each symmetry group

|Graver] Catalogue of all fullerenes with ten or more
SIS
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group #1 #2 || group | #1 #2 || group | #1 #H2
Ih 20 60 D5 60 | 100 G330 34 82
5 140 | 140 || 935 | 26 74 ©3 40 86
Ih 92 | 116 D3q | 32 84 Gon 48 | 108
Tq 28 76 D3 32 78 G0 30 78
T 44 88 Do, | 40 92 G2 32 82
Deh 36 84 Doq | 36 84 Cs 34 82
Dsd 24 72 7% 28 76 ;i 56 | 120
D 72 | 120 Z6 68 | 128 ©1 36 84
D5, 30 70 S 44 | 108
D54 40 80 C3n 62 | 116

~or each group' the number of vertices of the smallest
['-fullerene (#1) and the number of vertice of the smallest
['-fullerene without adjacent pentagons (#2) are listed.
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Fulleroid is a cubic convex
polyhedron with faces of size
S Or greater.
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Fulleroid is a cubic convex
polyhedron with faces of size
S Or greater.

only pentagons and hexagong
= fullerenes
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Fulleroid is a cubic convex
polyhedron with faces of size
S Or greater.

only pentagons and hexagong
= fullerenes

only pentagons and-gons
= (5, n)-fulleroids
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Symmetry of fulleroids

Questions:

= What are the possible symmetry groups of
fulleroids?
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Symmetry of fulleroids

Questions:

= What are the possible symmetry groups of
fulleroids?

= Given a point group’, for which numbers: there
exist(5, n)-fulleroids with the symmetry group?
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Questions:

What are the possible symmetry groups of

fulleroids?

Given a point group’, for which numbers: there

exist(5, n)-fulleroids with t

If there are somé&'(5, n)-ful

[' and some numbet, are t
them?

ne symmetry group?
eroids for some group

nere infinitely many of
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Construction of fulleroids

To create Iinfinite series of examples of fulleroids, one
can use several operations:

If two n-gons are connected by an edge, by inserting 10
pentagons they are changed o4 5)-gons:

Fullerenes and Fulleroids — p.22/24



Construction of fulleroids

If two n-gons are separated by two faces, the size of
them can be increased arbitrarily.
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Construction of fulleroids

As a special case of the second operation we get the
following: If original two faces are pentagons, we can
change them into twa-gons and@n — 8 new pentagons,
so the number ofi-gonal faces can be increased by two.
Forn = 7 we need two additional pentagons Iif the
operation Is to be carried out again:

&

_ >
vo
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