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Fullerenes

Fullereneis a carbon molecule, where atoms are
arranged in pentagons and hexagons.
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Fullerenes

Fullereneis a carbon molecule, where atoms are
arranged in pentagons and hexagons.

Carbon molecule?

There are two well-known forms of carbon:
diamond and graphite.
In diamond all atoms are 4-valent and form a
3-dimensional grid.
In graphite all atoms are 3-valent. They form flat
sheets with hexagonal structure.

Fullerenes and Fulleroids – p.2/24



How did it begin?

In 80s, certain experiments predicted the existence of
molecules with the exact mass of sixty or seventy or
more carbon atoms. In 1985, Harold Kroto (then of the
University of Sussex, now of Florida State University),
James R. Heath, Sean O’Brien, Robert Curl and Richard
Smalley, from Rice University, discovered C60, and
shortly after came to discover the fullerenes.

Kroto, Curl, and Smalley were awarded the 1996 Nobel
Prize in Chemistry for their roles in the discovery of this
class of compounds.
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The buckyball C60

The most common and the most
known fullerene is the Buckmin-
sterfullerene C60. It is the small-
est fullerene in which no two pen-
tagons share an edge. It was
named after Richard Buckminster
Fuller, a noted architect who pop-
ularized the geodesic dome. Later
the name got shortened to bucky-
ball.
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The buckyball C60

The structure of C60 is a truncated
icosahedron. It resembles a round
soccer ball of the type made of
hexagons and pentagons.
The pattern of soccer ball with
white hexagons and black pen-
tagons appeared first in 70s. In that
times no one suspected it could be
a model for a carbon molecule...
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The buckyball C60

A truncated icosahedron and a soccer ball
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Fullerene graphs

Fullerene graphis a planar,
3-regular and 3-connected graph,
the faces of which are only
pentagons and hexagons.
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Fullerene graphs

Fullerene graphis a planar,
3-regular and 3-connected graph,
the faces of which are only
pentagons and hexagons.

Steinitz’s Theorem: A graphG is
polytopal (e.g. isomorphic to the
graph of a convex polyhedron) if
and only ifG is planar and
3-connected.
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Fullerene graphs

Fullerene graphis a planar,
3-regular and 3-connected graph,
the faces of which are only
pentagons and hexagons.

Steinitz’s Theorem: A graphG is
polytopal (e.g. isomorphic to the
graph of a convex polyhedron) if
and only ifG is planar and
3-connected.

Whitney’s Theorem: Planar
3-connected (polytopal) graphs
can be embedded in the plane
essentially only one way.
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Fullerene graphs

Let the number of vertices, edges, pentagons, and
hexagons of a fullerene graphG be denoted byv, e, f5,
andf6, respectively.
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Fullerene graphs

Let the number of vertices, edges, pentagons, and
hexagons of a fullerene graphG be denoted byv, e, f5,
andf6, respectively. It is easy to see that

3v = 2e and 5f5 + 6f6 = 2e.
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Fullerene graphs

Let the number of vertices, edges, pentagons, and
hexagons of a fullerene graphG be denoted byv, e, f5,
andf6, respectively. It is easy to see that

3v = 2e and 5f5 + 6f6 = 2e.

Euler’s formula:

v + f5 + f6 = 2 + e

6v + 6f5 + 6f6 = 12 + 4e + 2e

f5 = 12

thus the number of pentagons in a fullerene graph is
exactly 12.
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Fullerene graphs

The number of hexagons is not limited; if there aref6

hexagons, then there are30 + 3f6 edges and20 + 2f6

vertices. Therefore the number of vertices is always even.
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Fullerene graphs

The number of hexagons is not limited; if there aref6

hexagons, then there are30 + 3f6 edges and20 + 2f6

vertices. Therefore the number of vertices is always even.
The smalles fullerene is the regular dodecahedron
(f6 = 0). It has 20 vertices and 30 edges.
For allf6 ≥ 2 there exist fullerene graphs withf6

hexagons, but there is no fullerene graph forf6 = 1.
The number of (non-isomorphic) fullerene graphs withn
vertices for some even numbersn:
20 22 24 26 28 30 40 60 80 100
1 0 1 1 2 3 40 1812 31924 285913

[P. W. Fowler, D. E. Manolopoulos: Atlas of Fullerenes]
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Perfect matchings in fullerene graphs

A perfect matching in a graph is a set of pairwise
non-adjacent edges ofG which covers all vertices ofG.
A perfect matching is in chemistry called aKekulé
structure. The more perfect matchings the fullerene
graph has, the more stable the fullerene molecule is
supposed to be.
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Perfect matchings in fullerene graphs

A perfect matching in a graph is a set of pairwise
non-adjacent edges ofG which covers all vertices ofG.
A perfect matching is in chemistry called aKekulé
structure. The more perfect matchings the fullerene
graph has, the more stable the fullerene molecule is
supposed to be.

Petersen’s Theorem: Any bridgeless connected cubic
graph has a perfect matching.

Every hamiltonian cubic graph is decomposable into 3
perfect matchings.

4 Colour Theorem: Any planar cubic graph is
decomposable into 3 perfect matchings.
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Perfect matchings in fullerene graphs

The existence of perfect matchings can be ensured by
several graph properties.
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Perfect matchings in fullerene graphs

The existence of perfect matchings can be ensured by
several graph properties.

GraphG is 1-extendableif every edge ofG appears in
some perfect matching.

[L. Lovasz and M. D. Plummer] Every 1-extendable
graph withp vertices andq edges contains at least
q−p

2
+ 2 perfect matchings.
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Perfect matchings in fullerene graphs

The existence of perfect matchings can be ensured by
several graph properties.

GraphG is 1-extendableif every edge ofG appears in
some perfect matching.

[L. Lovasz and M. D. Plummer] Every 1-extendable
graph withp vertices andq edges contains at least
q−p

2
+ 2 perfect matchings.

Every fullerene graph withp vertices contains at least
p

4
+ 2 different perfect matchings.
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Perfect matchings in fullerene graphs

GraphG is bicritical if G − u − v contains a perfect
matching for every pair of distinct vertices ofG.

GraphG is cyclicallyk-edge-connectedif G cannot be
separated onto two components, each containing a cycle,
by deletion of fewer thenk edges.
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GraphG is bicritical if G − u − v contains a perfect
matching for every pair of distinct vertices ofG.

GraphG is cyclicallyk-edge-connectedif G cannot be
separated onto two components, each containing a cycle,
by deletion of fewer thenk edges.

[L. Lovasz and M. D. Plummer] Every bicritical graph
with p vertices contains at leastp

2
+ 1 perfect matchings.

If G is a non-bipartite, 3-regular, cyclically
4-edge-connected graph on an even number of vertices,
thenG is bicritical.
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Perfect matchings in fullerene graphs

GraphG is bicritical if G − u − v contains a perfect
matching for every pair of distinct vertices ofG.

GraphG is cyclicallyk-edge-connectedif G cannot be
separated onto two components, each containing a cycle,
by deletion of fewer thenk edges.

[L. Lovasz and M. D. Plummer] Every bicritical graph
with p vertices contains at leastp

2
+ 1 perfect matchings.

If G is a non-bipartite, 3-regular, cyclically
4-edge-connected graph on an even number of vertices,
thenG is bicritical.

[T. Došlić] Every fullerene graph is cyclically 4-edge
connected.
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Perfect matchings in fullerene graphs

[T. Došlić] Every fullerene graph is cyclically 5-edge
connected.
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Symmetry of fullerenes

The presence of symmetry elements in a fullerene
molecule can have important consequences on its various
chemical and physical properties. It is important to know
the possible symmetries of fullerene structures if the
structure of higher fullerene is to be discovered and
proved.
Given a fullerene, one can look forsymmetry objects
such as mirror planes and rotational axes.
The reflections, rotations and othersymmetriesaltogether
form thesymmetry group.
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Symmetry of convex polyhedra

Possible symmetry groups
(point groups):

icosahedral:Ih, I

octahedral:Oh, O

tetrahedral:Th, Td, T

cylindrical: Dnh, Dnd, Dn

(n ≥ 2)
skewed:S2n, Cnh (n ≥ 2)
pyramidal:Cnv, Cn (n ≥ 2)
low symmetry:Cs, Ci, C1
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Symmetry of convex polyhedra

Possible symmetry groups
(point groups):

icosahedral:Ih, I

octahedral:Oh, O

tetrahedral:Th, Td, T

cylindrical: Dnh, Dnd, Dn

(n ≥ 2)
skewed:S2n, Cnh (n ≥ 2)
pyramidal:Cnv, Cn (n ≥ 2)
low symmetry:Cs, Ci, C1

The regular dodeca-
hedron hasIh sym-
metry
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Local symmetry

In fullerene graphs, all vertices are 3-valent and all faces
are pentagons or hexagons. Therefore, any symmetry
axis must be of 2-fold, 3-fold, 5-fold or 6-fold rotational
symmetry. This restriction reduces the list of possible
symmetry groups of fullerenes to 36 groups:

icosahedral:Ih, I

tetrahedral:Th, Td, T

cylindrical: D6h, D6d,
D6, D5h, D5d, D5, D3h,
D3d, D3, D2h, D2d, D2

skewed:S12, C6h, S10,
C5h, S6, C3h, S4, C2h

pyramidal:C6v, C6, C5v,
C5, C3v, C3, C2v, C2

low symmetry:Cs, Ci, C1
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Local symmetry

[P. W. Fowler, D. E. Manolopoulos, D. B. Redmond, and
R. P. Ryan] Whenever 5-fold or 6-fold rotational axis is
present, a perpendicular 2-fold rotational axis is forced.
This means thatC5, C5v, C5h, andS10 symmetries occur
only as subgroups of fivefold dihedral (D5h, D5d, D5), or
icosahedral (Ih, I ) groups; likewiseC6, C6v, C6h and
S12 symmetries occur only as subgroups of sixfold
dihedral groups (D6h, D6d, D6). The list of possible
symmetries of fullerenes thus contains 28 groups.
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Symmetry of fullerenes

[Babic, Klein, Sah] Symmetry of all fullerenes with up to
70 vertices
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[Fowler and Manolopoulos] Symmetry of all fullerenes
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symmetry groupΓ; the smallestΓ-fullerene without
adjacent pentagons for each symmetry groupΓ
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Symmetry of fullerenes

[Babic, Klein, Sah] Symmetry of all fullerenes with up to
70 vertices

[Fowler and Manolopoulos] Symmetry of all fullerenes
with up to 100 vertices; the smallestΓ-fullerene for each
symmetry groupΓ; the smallestΓ-fullerene without
adjacent pentagons for each symmetry groupΓ

[Graver] Catalogue of all fullerenes with ten or more
symmetries
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Symmetry of fullerenes

group #1 #2 group #1 #2 group #1 #2

Ih 20 60 D5 60 100 C3v 34 82

I 140 140 D3h 26 74 C3 40 86

Th 92 116 D3d 32 84 C2h 48 108

Td 28 76 D3 32 78 C2v 30 78

T 44 88 D2h 40 92 C2 32 82

D6h 36 84 D2d 36 84 Cs 34 82

D6d 24 72 D2 28 76 Ci 56 120

D6 72 120 S6 68 128 C1 36 84

D5h 30 70 S4 44 108

D5d 40 80 C3h 62 116

For each groupΓ the number of vertices of the smallest
Γ-fullerene (#1) and the number of vertice of the smallest
Γ-fullerene without adjacent pentagons (#2) are listed.

Fullerenes and Fulleroids – p.19/24



Fulleroids

Fulleroid is a cubic convex
polyhedron with faces of size
5 or greater.
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Fulleroids

Fulleroid is a cubic convex
polyhedron with faces of size
5 or greater.

only pentagons and hexagons
⇒ fullerenes
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Fulleroids

Fulleroid is a cubic convex
polyhedron with faces of size
5 or greater.

only pentagons and hexagons
⇒ fullerenes

only pentagons andn-gons
⇒ (5, n)-fulleroids
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Symmetry of fulleroids

Questions:

What are the possible symmetry groups of
fulleroids?
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Given a point groupΓ, for which numbersn there
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Symmetry of fulleroids

Questions:

What are the possible symmetry groups of
fulleroids?

Given a point groupΓ, for which numbersn there
exist(5, n)-fulleroids with the symmetry groupΓ?

If there are someΓ(5, n)-fulleroids for some group
Γ and some numbern, are there infinitely many of
them?
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Construction of fulleroids

To create infinite series of examples of fulleroids, one
can use several operations:
If two n-gons are connected by an edge, by inserting 10
pentagons they are changed to (n + 5)-gons:

n

n

−→

n + 5

n + 5
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Construction of fulleroids

If two n-gons are separated by two faces, the size of
them can be increased arbitrarily.

n

n

−→

n+ k

n+ k
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Construction of fulleroids

As a special case of the second operation we get the
following: If original two faces are pentagons, we can
change them into twon-gons and2n − 8 new pentagons,
so the number ofn-gonal faces can be increased by two.
Forn = 7 we need two additional pentagons if the
operation is to be carried out again:

−→
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