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2 S.JENDROl' AND H.-J. VOSS4. Light subgraphs of order three 125. Subgraphs with restricted degrees of their vertices 156. Light subgraphs - maximum degree problems 167. Maximum degree of light families 198. The weight problems 209. Light subgraphs of graphs embedded on surfaces 2310. Related topics 28References 301. IntroductionThe study of the structure of plane graphs (i.e. planar graphs embedded in the planewithout edge crossings) has its origin in the time of L. Euler. It is connected with the lovelyresult (Euler's polyhedron formula discovered in 1750) stating that in a convex polyhedronwith n vertices, e edges and f faces, n� e+ f = 2. It was apparently discovered by Eulerand �rst proved by Legendre (see, e.g. [BLW], [Mk]). The graph theory version of theformula is expressed inTheorem 1.1 (Euler's Polyhedron Formula). In a plane connected graph with nvertices, e edges and f faces,(1.1) n� e+ f = 2: �Euler's formula was not systematically exploited to any extent until the late nineteenthcentury. Only then a renaissance of interest in metric and combinatorial properties of solidsstarted. A renewed interest in geometry and combinatorics of convex solids culminatedin the landmark book [SR] by Steinitz and Rademacher published in 1934. This bookpresented an extraordinary result, known as Steinitz' theorem. Unfortunately, the theoremwas couched in such an archaic language that it was not appreciated for many years. Onlythe reformulation of the theorem by Gr�unbaum in 1963 released a torrent of results. Thisresulted in a cross-fertilization of geometry with both graph theory and combinatorics,with bene�ts to all three areas. To be able to formulate this "Fundamental Theorem onPolyhedral Graph Theory" in modern terminology we need two de�nitions. The graph ofa polyhedron P is the graph consisting of vertices and edges of P . A graph G is polyhedralif it is isomorphic to the graph of some convex polyhedron.Theorem 1.2 (Steinitz' Theorem). A graph is polyhedral if and only if it is planarand 3-connected. �This result is deeper than it might at �rst appear: proofs and excellent discussionsmay be found in ([Mk], [G1], [G3], [Zi]). What makes the theorem so remarkable is itsimplication that a general class of 3-dimensional structures is equivalent to a certain classof 2-dimensional ones - that is, studying convex polyhedra combinatoricaly does not requirethinking of them in 3-dimensional space. It is su�cient to investigate their graphs. Henceany knowledge in 3-connected planar graphs indicates properties of convex polyhedra.



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 3Probably the most important impulse to study the structure of plane graphs came fromone of the most celebrated combinatorial problems - The Four Colour Conjecture (4CC),posed in 1852. This conjecture was proved in 1976 by Appel and Haken [AH] and theresult is well known asTheorem 1.3 (The Four Colour Theorem). Vertices of every planar graph can becoloured with four colours in such a way that adjacent vertices are coloured with di�erentcolours. �When trying to solve 4CC, Birkho� in 1912 reviewed several ideas due to earlier writers,and welded them into a systematic method of investigation. The line of enquiry which hesuggested lead to the solution of the problem in 1976 (see Chapter 9 in [BLW]). This lineis a common method for proofs of many theorems concerning properties of plane graph,see e.g. [AH], [Bo2], [Bo4], [Bo8], [Bo13], [BW2], [EHJ], [HM], [HJ2], [MS], [PT], [WL1].If there are plane graphs which are counterexamples to a theorem, then there mustbe among them a graph with the smallest number of vertices; such a graph is said to beirreducible (or minimal counterexample) with respect to the theorem. The basic idea isto obtain more and more restrictive conditions which an irreducible graph must satisfy,in hope that eventually we shall have enough conditions either to construct the graphexplicitly, or, alternatively, to prove that it cannot exist. These restrictive conditions areusually described in language of con�gurations.A con�guration H in a plane graph G is a connected portion of G (i.e. a connectedsubgraph H of G together with degrees of vertices of H in G). We call the set C ofcon�gurations unavoidable in a given family G of plane graphs if at least one member of Cis present in every graph from G. As an example we note that the set of vertices of degreeless than six is in this sence unavoidable in the family of all plane graph. We also de�nea con�guration H to be reducible if it cannot be contained in any ireducible graph withrespect to the conjecture.Heawood in 1890 observed that if there was an irreducible plane graph with respectto the 4CC then it would belong to the set A of plane triangulations of minimum degree5. Hence to prove 4CC it is su�cient to �nd a �nite unavoidable set U of reduciblecon�gurations in A. Appel and Haken [AH] were successful in �nding such a set consistingof 1879 con�gurations (see also [HS], [WW]). In 1989 Appel and Haken [AH] announcedthat proofs of 4CC with only 1482, 1405, and 1256 con�gurations are possible. In anindependent proof of 4CC Robertson, Sanders, Seymour, and Thomas [RSST] present anunavoidable set of 633 reducible con�gurations.Already in 1904 Wernicke showed that every plane triangulation of minimum degree5 contains either two adjacent vertices of degree 5 or a vertex of degree 5 adjacent to avertex of degree 6, see [We]. In our modern language this reads as follows: "The set A ofall plane triangulations of minimum degree 5 has an unavoidable set of two con�gurations,namely, an edge with both end vertices of degree 5, and an edge with one end vertex ofdegree 5 and the second end vertex of degree 6."In 1922 Franklin [Fr] extended Wernicke's result proving that each plane graph fromthe set A contains a vertex of degree 5 adjacent either to two other vertices of degree 5,or to a vertex of degree 5 and a vertex of degree 6, or to two vertices of degree 6.



4 S.JENDROl' AND H.-J. VOSSAttracted by 4CC and the result of Franklin, H. Lebesgue (the top personality of theMathematical Analysis of the 20th century) realized that it would be very helpful to identifyunavoidable sets of con�gurations for di�erent families of plane graphs. In his 1940 paper[Le] he presented several such lists. His fundamental theorem (see Theorem 2.1 in Section2 below) provides an unavoidable set of con�gurations for the family of all 3-connectedplane graphs.However, there is a limit to what can be achieved with Lebesgue's approach, and sostronger methods have been devised over the last three decades in order to solve variouslong-standing structural and colouring problems on plane graphs (for a survey of a portionof this area, see [Bo13]). As a result, many unavoidable sets of con�gurations for di�erentfamilies of plane graphs have been discovered. They are scattered in many papers. Itwould be an honourable achievement to collect and classify them.We concentrate ourself on unavoidable sets C of graphs for given families G of planegraphs that have the following property: Whenever a graph G from G has a subgraph Hfrom C then it also contains a copy K of H such that every vertex of K has, in G, degreebounded by a constant '(C;G) that depends only on the set C and the family G. We callthe graphs from the family C light in the family G.It is a well known fact easily deduced from Euler's Formula that each plane graphcontains a vertex of degree at most �ve. Such a vertex can be interpreted as a path onone vertex. Thus such a path on one vertex is light in the class of all plane graphs. In1955 A. Kotzig showed that each 3-connected plane graph contains an edge (e.i. a pathwith two vertices) of degree sum at most 13. We say that such paths with two vertices arelight in the class of these graphs. The complete bipartite graphs K2;s for s � 3 show thatthe paths with two vertices are not light in the class of all plane graphs. In 1997 Fabriciand Jendrol' proved that for each k the paths with k vertices are light in the family of all3-connected plane graphs and no other plane graph H, di�erent from a path is light in thisfamily of graphs.In this paper we give a survey of results on light subgraphs in several families of graphsembedded in the plane and the projective plane. Light subgraphs in graphs embeddedin surfaces other than the plane or the projective plane are considered in another surveypaper [JV10]. However, in Section 9 we brie
y mention a recent progress together withthe most important results concerning light subgraphs in graphs edmbedded in surfaces.2. Notation and preliminariesAll graphs considered throughout the paper have no loops or multiple edges. Multi-graphs can have multiple edges and loops. An embedding of a planar graph (planarmultigraph) into the plane M is called a plane graph (a plane multigraph, respectively). Ifa planar (multi)graph G is embedded in M , then the maximal connected regions of M �Gare called the faces of G.The facial walk of a face � of a connected plane multigraph G is the shortest closedwalk traversing all edges incident with �. The degree (or size) of a face � is the lengthof its facial walk. The degree of a face � in G is denoted by degG(�) or deg(�) if G isknown from the context. The degree of the vertex v of a connected plane multigraph G



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 5is the number of incidences of edges with v, where loops are counted twice. Analogously,the notation degG(v) or deg(v) is used for the degree of a vertex v. Vertices and faces ofdegree i are called i-vertices and i-faces (or i-gons), respectively. The numbers of i-verticesand i-faces of a connected plane multigraph G are denoted ni(G) and fi(G), respectively,or ni and fi, if G is known. We use �(G) to denote the minimum vertex degree of G.We call an edge h an (a; b)-edge if the endvertices of h are an a-vertex and a b-vertex.By ea;b(G) or ea;b we denote the number of (a; b)-edges in a plane multigraph G.An r-face �; r � 3, is said to be the (a1; a2; : : : ; ar)-face if vertices x1; x2; : : : ; xr; in orderincident with � have degrees a1; a2; : : : ; ar. An (a1; a2; a3)-face (an (a1; a2; a3; a4)-face,an (a1; a2; a3; a4; a5)-face) is called an (a1; a2; a3)-triangle, (an (a1; a2; a3; a4)-quadrangle,or an (a1; a2; a3; a4; a5)-pentagon, respectively). Now we are able to state the classicaltheorem of Lebesgue [Le] already mentioned in Section 1Theorem 2.1 (Lebesgue's Theorem). Every 3-connected plane graph contains at leastone of the following faces(i) an (a; b; c)-triangle fora = 3 and 3 � b � 6 and 3 � c; or a = 3 and b = 7 and 7 � c � 41; ora = 3 and b = 8 and 8 � c � 23; or a = 3 and b = 9 and 9 � c � 17; ora = 3 and b = 10 and 10 � c � 14; or a = 3 and b = 11 and 11 � c � 13; ora = 4 and b = 4 and 4 � c; or a = 4 and b = 5 and 5 � c � 19; ora = 4 and b = 6 and 6 � c � 11; or a = 4 and b = 7 and 7 � c � 9; ora = 5 and b = 5 and 5 � c � 9; or a = 5 and b = 6 and 6 � c � 7; or(ii) a (3; b; c; d)-quadrangle forb = 3 and c = 3 and d � 3, or b = 3 and c = 4 and 4 � d � 11, orb = 4 and c = 3 and 4 � d � 11, or b = 3 and c = 5 and 5 � d � 7, orb = 5 and c = 3 and 5 � d � 7, or b = 4 and c = 4 and 4 � d � 5, orb = 4 and c = 5 and d = 4, or(iii) a (3; 3; 3; 3; d)-pentagon for 3 � d � 5. �Let V (H) denote the set of vertices of a graph H. If H is a subgraph of a graph G,then the weight wG(H) of H in G is the sum of degrees in G of vertices of H.wG(H) = Xv2V (H) degG(v):Moreover, the weight wG(e) of an (a; b)-edge e iswG(e) = a+ bIf G is known from context, then we simply write w(H) = wG(H) and w(e) = wG(e).A path and a cycle on k distinct vertices are described as a k-path and a k-cycle,respectively. A k-path is denoted by Pk. The length of a path or a cycle is the number ofits edges. A k-path Pk with vertices v1; v2; :::; vk in order is also called an (a1; a2; :::; ak)-path, if deg(vi) = ai for all i = 1; 2; :::; k.Let K1;3, be a subgraph of a graph G, we call it a (d; a; b; c)-star if its central vertexhas degree d and its three leaves have degrees a; b, and c in G.



6 S.JENDROl' AND H.-J. VOSSFor a connected plane multigraph G, let V;E, and F be the vertex set, the edge set,and the face set of G, respectively. SinceX�2F deg(�) = Xv2V deg(v) = 2jEj;from (1.1) we can easily derive(2.1) X�2F(6� deg(�)) + 2Xv2V (3� deg(v)) = 12(2.2) Xv2V (6� deg(v)) + 2X�2F(3� deg(�)) = 12(2.3) Xv2V (4� deg(v)) + X�2F(4� deg(�)) = 8Let P(�; �) be the family of all 3-connected plane graphs (i.e. polyhedral graphs, seeTheorem 1.2) with minimum vertex degree at least � and minimum face size at least �.P(�; ��) stands for the family of all graphs from P(�; �) in which every face is a �-face.Analogously the family P(��; �) is introduced. Note that the family P(3; �3) is the family ofall plane triangulations and P(3; �4) is the family of all plane quadrangulations. By P(�; �;R)we mean a subfamily of P(�; �) the members of which ful�l the additional requirements R.It is an easy consequence of the equalities (2:1); (2:2) and (2:3) that P(�; �) is nonemptyonly when (�; �) 2 f(3; 3); (3; 4); (4; 3); (3; 5); (5; 3)g.Let M(�; �) be the family of all connected plane multigraphs with minimum vertexdegree at least � and minimum face size at least �. A plane multigraph G from the familyM(3; 3) is called to be a normal plane map. If a plane multigraph fromM(3; 3) has only 3-faces then it is called a plane semitriangulation. Note that semitriangulations can containloops and multiple edges while triangulations do not have them.Using (1.1) one can easily obtain(2.4) jEj � 3jV j � 6for each normal plane map with jV j � 3.For two graphs H and G we write G �= H if the graphs H and G are isomorphic. Fora graph K we say that G contains a copy of K if G has a subgraph H such that H �= K.3. Light edgesThe theory of light subgraphs has its origin in two beautiful theorems of Kotzig [Ko1].They state that every 3-connected plane graph contains an edge of weight (i.e. the sum ofdegrees of its endvertices) at most 13 in general, and at most 11 in the absence of 3-vertices,respectively. These bounds are best possible, as can be seen from the 3-connected plane



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 7graphs obtained by placing 20 and 12 small pyramids on the faces of the icosahedron anddodecahedron, respectively, as well as for in�nitely many other 3-connected plane graphs.Kotzig's result was further developed in various directions. We shall discuss some ofthem in next sections. Here we only mention that in 1972 Erd�os conjectured (see [G4]) thatKotzig's theorem is valid for all planar graphs with minimum vertex degree at least 3. Thisconjecture was proved (but never published) by Barnette (see [G4]) and independently byBorodin [Bo2]. The theorem of Kotzig was published in 1955 in Slovak. Therefore, itsoriginal proof [Ko1] is not readily accessible, but Gr�unbaum [G3] in 1975 gave a sketch ofa proof in the English language. Other proofs can be deduced from [Bo2], [Bo3], [Bo5],[Bo10], [Je5]. Here we present a simple proof according to [Je4] that uses the Dischargingmethod, a method used in the proof of the Four Color Theorem (see [AH], [RSST]). (Notethat the idea of discharging is due to Heesch [H1]). This method is a common techniquefor proving results on planar graphs. We prove the theorem in a bit stronger form thatimplies the truth of Erd�os' conjecture.Theorem 3.1 (Kotzig's theorem). Every normal plane map contains a (3; a)-edge with3 � a � 10, or a (4; b)-edge with 4 � b � 7, or a (5; c)-edge with 5 � c � 6. The bounds10, 7 and 6 are best possible.Proof. Let G be a counterexample on a set V of n vertices that has the maximum numberof edges, say m, among all counterexamples on n vertices. Let f be the number of facesof G. For the purposes of the proof, edges of the desired type are called light edges.By the choice of G, it must be a semitriangulation. Suppose G has a k-face � withk � 4. Because light edges are not present in G each edge has an endvertex of degree atleast 6, so � is incident with two vertice x and y that are not consecutive on the boundaryof � and both have degrees at least 6.Inserting a diagonal xy into the face � we obtain a graph G� having the same vertexset V as G but one edge more, a contradiction.Because G is a semitriangulation, (2.2) may be rewritten(3.1) Xv2V (deg(v)� 6) = �12:Consider an initial charge function ' : V ! Q such that '(v) = deg(v)� 6 for v 2 V .Therefore (3.1) is equivalent to Xv2V '(v) = �12:We use the following rule in order to transform ' into a new charge function  : V ! Qby redistributing charges locally so that Pv2V '(v) = Pv2V  (v).Rule. If e = uv is an edge of G with deg(u) � 7 and deg(v) � 5. Then the vertex u sendsalong e to v the charge 6�deg(v)deg(v) . Let  (x) denote the resulting charge at a vertex x. Sincecharge sent to v is deducted from u, we haveXx2V  (x) = �12:



8 S.JENDROl' AND H.-J. VOSSWe are going to show that  is a nonnegative function, which will trivially be a contra-diction. To this end consider several cases.Case 1. Let v be a k-vertex for 3 � k � 6. As G does not contain light edges, v receivesa charge 6�kk from each of its neighbours. Hence  (v) = '(v) + k 6�kk = k� 6+ 6� k = 0.Case 2. Let u be a k-vertex for k � 7. Because G is a semitriangulation and does notcontain light edges, at most half of the neighbors of u can have degree at most 5. Hencethe vertex u sends a charge to at most �k2� vertices, all of degrees � 5.2.1. k = 7. A transfer from u is possible only to 5-vertices, therefore (u) � '(u)� 15 �72� = 7� 6� 35 > 0.2.2. k 2 f8; 9; 10g. The vertex u sends charges only along (k; 4)-edges or (k; 5)-edges.Since charge 12 would be sent along (k; 4)-edges and only charge 15 along (k; 5)-edges wehave  (u) � '(u)� 12 �k2� = k � 6� 12 �k2� � 0:2.3. If k � 11, then u sends charge 15 along (k; 5)-edges, charge 12 along (k; 4)-edges andcharge 1 along (k; 3)-edges. Since at most �k2� neighbours of u have degree at most 5, weobtain  (u) � '(u)� �k2� = k � 6� �k2� � 0:The bounds 10 and 6 are best possible as can be seen from the graphs mentioned inSection 2. An example showing that also 7 is best possible can be found in [Bo4].This �nishes the proof. �Now we turn our attention to the problem of estimating the number of light edges (i.e.the edges having weight at most 13) in families of plane graphs and multigraphs. Letei;j(G) = ei;j be the number of edges in a planar multigraph G that join i-vertices withj-vertices.Theorem 3.1 of Kotzig states thatPi+j�13 ei;j > 0 for every 3-connected planar graph.Gr�unbaum [G4] conjectured that for every 3-connected plane graph the following is true:20e3;3 + 15e3;4 + 12e3;5 + 10e3;6 + 203 e3;7 + 5e3;8 + 103 e3;9 + 2e3;10+12e4;4 + 7e4;5 + 5e4;6 + 4e4;7 + 83e4;8 + 23e4;9+4e5;5 + 2e5;6 + 13e5;7 + 12e6;6 � 120:



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 9Jucovi�c [Ju1] proved that each plane triangulation satis�es20e3;3 + 25e3;4 + 16e3;5 + 10e3;6 + 203 e3;7 + 5e3;8 + 52e3;9 + 2e3;10+20e4;4 + 11e4;5 + 5e4;6 + 6e4;7 + 5e4;8 + 3e4;9+8e5;5 + 2e5; 6 + 2e5;7 + 2e5;8 � 120:Later Jucovi�c [Ju2] proved that this inequality holds for all 3-connected planar graphs.For the class of normal plane maps, which includes the class of 3-connected plane graphs,Borodin [Bo5] obtained the following result. (Recall that a normal plane map is a planemultigraph in which every vertex degree and every face size is at least 3.)Theorem 3.2 [Bo5]. For each normal plane map it holds that40e3;3 + 25e3;4 + 16e3;5 + 10e3;6 + 203 e3;7 + 5e3;8 + 52e3;9 + 2e3;10+503 e4;4 + 11e4;5 + 5e4;6 + 53e4;7 + 163 e5;5 + 2e5;6 � 120;Moreover, each coe�cient of this inequality is best possible. �The sharpness of coe�cients in Theorem 2 and in those below is understood in the sencethat neither of coe�cients may be decreased keeping all the other �ij constant withoutviolating the correspondent relation.A �nal answer to the above mentioned Gr�unbaum's conjecture gives the following resultby Fabrici and Jendrol' [FJ1]:Theorem 3.3. [FJ1]. For every 3-connected plane graph there is20e3;3 + 25e3;4 + 16e3;5 + 10e3;6 + 203 e3;7 + 5e3;8 + 52e3;9 + 2e3;10+503 e4;4 + 11e4;5 + 5e4;6 + 53e4;7 + 163 e5;5 + 2e5;6 � 120;Moreover, each coe�cient is best possible. �The two inequalities for normal maps and 3-connected planar graphs, respectively, di�eronly in the coe�cient of e3;3. As was later proved by Borodin, Theorem 3.3 is valid for allnormal plane maps with the exception of exactly one multigraph.In the subclass of all normal plane maps with minimum degree at least 4 we have e3;j = 0for 3 � j � 10. Borodin proved that in the resulting inequality all coe�cients are bestpossible.



10 S.JENDROl' AND H.-J. VOSSTheorem 3.4 [Bo5]. For every normal plane map of minimum degree four, it holds that503 e4;4 + 11e4;5 + 5e4;6 + 53e4;7 + 163 e5;5 + 2e5;6 � 120Moreover, each of these coe�cients is best possible. �Already in 1904 in his work on the Four Color Problem Wernicke [We] has establishedthe inequality e5;5+ e5;6 > 0 for every graph G 2 P(5; 3). Further contributions are due toGr�unbaum [G2], [G4], Fisk (see [GS]), Gr�unbaum and Shephard [GS], and Borodin [Bo6].Borodin and Sanders [BS] found the best possible light edge inequality for plane graphs ofminimum degree �ve.Theorem 3.5 [BS]. For every normal plane map of minimum vertex degree at least 5 andminimum face size 3 it holds that 143 e5;5 + 2e5;6 � 120:Moreover, the coe�cients 143 and 2 are best possible. �If in Theorem 3.5 we use e4;j = 0 for 4 � j � 7 then the resulting inequality di�ersfrom that of Theorem 3.4 only in the coe�cient of e5;5.We �nish this section with few very recent results.A planar graph which can be embedded in the plane in such a way that every vertexlies on the boundary of the same region is called an outerplanar graph. Hackmann andKemnitz [HK] recently provedTheorem 3.6 [HK]. Every outerplanar graph with minimum degree at least 2 containsan (2; b)-edge for 2 � b � 3 or a (2; 4; 2)-path. �Theorem 3.7 [JM]. Every planar graph of minimum degree �ve contains a (5; a; b; c)-starfor a = 5 and 5 � b � 6 and 5 � c � 7, or a = b = c = 6.Moreover the bounds 6 and 7 are best possible. �The next theorem is a strengthenning of Theorems 3.1 and 3.7.Theorem 3.8 [FHJ]. Every planar graph G of minimum degree at least 3 contains(i) a (3; b)-edge for 3 � b � 10, or(ii) an (a; 4; b)-path fora = 4 and 4 � b � 10; ora = 5 and 5 � b � 9; or6 � a � 7 and 6 � b � 8; or(iii) a (5; a; b; c)-star for4 � a � 5 and 5 � b � 6 and5 � c � 7; or a = b = c = 6:



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 11Moreover, for every S 2 f(3; 10)-edge, (4; 4; 9)-path, (5; 4; 8)-path, (6; 4; 8)-path, (7; 4; 7)-path, (5; 5; 6; 7)-star, (5; 6; 6; 6)-starg there is a 3-connected plane graph H containing Sand no other con�guration from the above list. �Theorem 3.8 has an application in a problem of colouring of vertices of the square ofplanar graph posed by Wegner [Wg] in 1977 (see also Jensen and Toft [JT], p.51).Recall that the square G2 of a graph G is a graph with the same vertex set V (G). Twovertices x and y are adjacent in G2 if and only if their distance in G is at most 2.Corollary 3.8.1 [FHJ]. Let G be a planar graph of maximum degree � � 11. Then forthe chromatic number �(G2) of the square of G there holds:�(G2) � 2� + 19:Proof. Suppose there is a counterexample. Let H be one with the minimum number ofvertices. Evidently the minimum degree of H is at least 3. By Theorem 3.8 the graph Hcontains an (a; b)-edge e = xy with degH(x) = a, degH(y) = b and degH2(x) � 2� + 18with values a = 3 and b � 10, or a = 4 and b � 7, or a = 5 and b � 6, and H2 being thesquare ofH. If the edge e is contracted into a vertex z and all multiple edges are simply�ed,the resulting graph H� has the same maximum degree but it is not a counterexample. Thesquare of H� has a colouring with 2� + 19 colours. This colourings induces a colouringwith 2� + 19 colours of the graph H in which all vertices except of x and y are coloured.Then the colour of vertex z is assigned to the vertex y. As the vertex x has, in H2, atmost 2� + 18 neighbours it can be coloured with one of the available 2� + 19 colours, acontradiction. �Note that the bound of Corollary 3.8.1 is better than 2� + 25, the bound obtainedrecently by van den Heuvel and McGuinnes [HM].The requirement on minimum degree at least 3 in the above theorems cannot be relaxedas one can see from the graphs K1;r and K2;r for r � 3.Theorem 3.9 [ABG]. Every connected planar graph of order at least 2 contains either(i) two vertices having degree sum � 4, or(ii) two 3-vertices at distance two, or(iii) an edge e of weight at most 11 incident with two 3-faces, or(iv) an edge g of weight at most 9 incident with a 3-face, or(v) an edge h of weight at most 7.Moreover the bounds 11, 9, and 7 are tight. �For other results in this direction, see Borodin [Bo3], [Bo5], [Bo6], [Bo13], Borodin andSanders [BS], Fabrici, Harant, and Jendrol' [FHJ], Jucovi�c [Ju2], Sanders [Sa], and Zaks[Za1], [Za2]. Note that a result weaker than the theorem of Kotzig was known already toLebesgue. In 1940 he proved that every G 2 P(3; 3) contains an edge e with w(e) � 14,see [Le] and Theorem 2.1.



12 S.JENDROl' AND H.-J. VOSS4. LIGHT SUBGRAPHS OF ORDER THREETrying to solve the Four Color Map Problem Franklin [Fr] in 1922 proved that every 3-connected plane graph G of minimum degree at least 5, contains a 3-path P3 with weight17, the bound being best possible. Only recently, in 1993, Ando, Iwasaki, and Kanekoobtained the analogous result for all 3-connected plane graphs. Namely, they provedTheorem 4.1 ([AIK]). Every G 2 P(3; 3) contains a 3-path P3 with weight at most 21.Moreover the bound 21 is sharp.The following result has been proved by Jendrol' [Je2] which strengthens Theorem 3.1of Kotzig [Ko1].Theorem 4.2 ([Je2]). Every G 2 P(3; 3) contains an (a; b; c)-path where(i) 3 � a � 10 and b = 3 and 3 � c � 10, or(ii) 4 � a � 7 and b = 4 and 4 � c � 7, or(iii) 5 � a � 6 and b = 5 and 5 � c � 6, or(iv) a = 3 and 3 � b � 4 and 4 � c � 15, or(v) a = 3 and 5 � b � 6 and 4 � c � 11, or(vi) a = 3 and 7 � b � 8 and 4 � c � 5, or(vii) a = 3 and 3 � b � 10 and c = 3, or(viii) a = 4 and b = 4 and 4 � c � 11, or(ix) a = 4 and b = 5 and 5 � c � 7, or(x) a = 4 and 6 � b � 7 and 4 � c � 5.Moreover, in each of the cases (iii), (iv), (vi), and (vii) the upper bounds on parametersa; b; c can be obtained simultaneously. Furthermore, there is a graph in P(3; 3) having only(4; 7; 4)-paths and (7; 4; 7)-paths from the above list. �The requirement of 3-connectedness in the above theorems is fundamental because ofthe following theorem. We present a proof of this theorem with a proof technique that istypical in this area.Theorem 4.3 [Je6]. For every connected plane graph H of order at least 3 and everyinteger m � 3 there exists a 2-connected plane graph G such that each copy of H in Gcontains a vertex A with degG(A) � m.Proof. Augment H to a triangulation T with vertex set V (H). Let [uvw] be an outer3-face of T . For m � 2, let Dm be a plane graph obtained from the double 2m-pyramidwith poles z1 and z2 by deleting every second edge of the equatorial cycle C2m. If we insertinto a 3-face [z1xy] of Dm the triangulation T so that the vertex u coincides with r1, thevertices v and w with x and y, respectively, we obtain the required graph G. If H has atleast three vertices then each copy of H in G contains at least one of the vertices z1 or z2,which have degree at least 2m. �The graph G from the proof of Theorem 4.3 contains a 3-face incident with two 3-vertices. Borodin [Bo11] observed that if such faces are excluded the requirement of 3-connectivity can be omitted. More precisely he has proved.



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 13Theorem 4.4 [Bo11]. Each normal plane map G having no 3-faces incident with two3-vertices has the following two properties:(i) G has either a 3-path P3 with w(P3) � 18 or a vertex of degree � 15 adjacent totwo 3-vertices(ii) G has either a 3 path P 03 with w(P 03) � 17 or an edge e with w(e) � 7. �Already in 1940 Lebesgue [Le] proved that each 3-connected plane graph G of minimumdegree 5 contains a 3-cycle C3 bounding a 3-face � with w(C3) � 19. Kotzig [Ko2]improved this result to w(C3) � 18 and conjectured in [Ko3] that 17 is the best upperbound. Borodin con�rms this inTheorem 4.5 [Bo1]. Every G 2 P(5; 3) contains a 3-face � with wG(�) � 17. This boundis best possible. �This theorem has a beautiful corollary. It con�rms the conjecture of Gr�unbaum from1975, see [G3], that every 5-connected plane graph is cyclically 11-connected. Let us sketcha proof of this statement. First recall the a graph is cyclically k-connected for some k � 1if there is no set S of less than k-edges with property that G�S has two components eachcontaining a cycle. Let G be a graph from P(5; 3). Consider a face � of weight at most 17of G. Choose S to be the set of edges incident with vertices of � but not on the boundaryof �. Clearly jSj � 11 and the graph G� S has two componts each containing a cycle.Note that already earlier, in 1972, Plummer [Pl] proved that the cyclic connectivity ofthese graphs is at most 13.Many papers have studied the structural properties of di�erent classes of plane trian-gulations, see e.g. [Ko2], [Ko3], Borodin [Bo6], [Bo9], [Bo12], [BB], Jendrol' [Je5], Sanders[Sa], Borodin and Sanders [BS]. Recenty Jendrol' [Je5] proved the following theorem whichincludes earlier results by Lebesgue [Le], Kotzig [Ko2], [Ko3] and Borodin [Bo9].Theorem 4.6 [Je5]. Each plane triangulation of order at least �ve contains an (a; b; c)-triangle, where(i) a = 3 and b = 4 and 4 � c � 35, or(ii) a = 3 and b = 5 and 5 � c � 21, or(iii) a = 3 and b = 6 and 6 � c � 20, or(iv) a = 3 and b = 7 and 7 � c � 16, or(v) a = 3 and b = 8 and 8 � c � 14, or(vi) a = 3 and b = 9 and 9 � c � 14, or(vii) a = 3 and b = 10 and 10 � c � 13, or(viii) a = 4 and b = 4 and c � 4, or(ix) a = 4 and b = 5 and 5 � c � 13, or(x) a = 4 and b = 6 and 6 � c � 17, or(xi) a = 4 and b = 7 and 7 � c � 8, or(xii) a = 5 and b = 5 and 5 � c � 7, or(xiii) a = 5 and b = 6 and c = 6:Moreover, if c(k) denotes the upper bound on c in the above case (k), then c(i) � 30; c(ii)� 18; c(iii)= 20; c(iv) � 7; c(v)= 14; c(vi) � 11; c(vii) � 12; c(viii)= 1; c(ix) � 10; c(x)� 10; c(xi) � 7 and c(xii)= 7. �



14 S.JENDROl' AND H.-J. VOSSNote that Theorem 4.6 considers all cases since plane triangulations have no multipleedges and hence every plane triangulation with at least �ve vertices has no (3; 3)-edge.Theorem 4.6 points out that if a plane triangulation has no (4; 4)-edge, then it containsa light triangle. Borodin [Bo12] has gone further. He provedTheorem 4.7 [Bo12]. If in a plane triangulation T there is no path consisting of k verticesof degree 4 for some k � 1, then(i) T contains a 3-face � with weightw(�) � maxf37; 10k + 17g and(ii) either there is a (3; 4)-edge or a 3-face � with weightw(�) � maxf29; 5k + 8g;where all bounds are best possible. �In a connection with results mentioned in this section, the following problem seems tobe interesting.Problem 4.1. Find the best versions of Theorem 4.2. and Theorem 4.6In each of the cases (iii), (iv), (vi) and (vii) of Theorem 4.2 the upper bounds onparameters are tight and can be obtained independently from the others. Furthermore,there is a graph G 2 P(3; 3) having only (4,7,4)-paths and (7,4,7)-paths from the list ofthe Theorem.Similarly we are interested in the best version of Theorem 4.6. As we have mentioned,in the cases (iii), (v), (viii), (xii) and (xiii) the assertions of Theorem 4.6 are best possible.For the other cases we believe the following Conjecture is true:Conjecture 4.1 [Je4]. If c(k) denotes the upper bound on c in the case (k) of Theorem4.6, then c(i)= 30; c(ii)= 18; c(iv)= 14; c(vi)= 2; c(vii)= 12; c(ix)= 10 and c(xi)= 7. �For a plane graph G from P(3; 3), let fi;j;k be the number of 3-faces that are incidentwith an i-vertex, a j-vertex, and a k-vertex. As proved by Lebesgue [Le], f5;5;5+ 23f5;5;6+37f5;5;7 + 14f5;5;8 + 19f5;5;9 + 13f5;6;6 + 221f5;6;7 � 120 holds for every graph G 2 P(5; 3).This result of Lebesgue and Theorem 4.5 are strengthened in the next Theorem provedby Borodin [Bo7] except fact that the optimality of the coe�cient 5 of f5;5;7. The bestpossibility of it was proved by Borodin and Sanders in [BS].Theorem 4.8. If G is a graph from P(5; 3), then18f5;5;5 + 9f5;5;6 + 5f5;5;7 + 45;6;6 � 144:Moreover, all of these coe�cients are best possible. �



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 155. SUBGRAPHS WITH RESTRICTED DEGREESIn this section we prove two basic results that are typical for this topic and have served asa starting point for a theory of light subgraphs which we shall describe in further sections.Because of Theorem 4.3 we only deal with the family of 3-connected plane graphs. The�rst result is due to Fabrici and Jendrol'.Theorem 5.1 [FJ2]. If G is a 3-connected plane graph having a k-path where k is apositive integer, then G contains a k-path Pk such that all vertices of Pk have degree atmost 5k in G. Moreover, the bound 5k is tight.Proof. (a) The upper bound. Suppose the theorem is not true, and let G be a counterex-ample on n vertices that has the most edges among all counterexamples on n vertices. Letus call a vertex major (minor) if its degree is > 5k (� 5k, respectively). The crucial pointof the proof is in the followingClaim (�) Every major vertex is incident only with triangular faces.Otherwise, there is a major vertex u incident with a face � of size at least 4. A diagonaluv can be insert into � that joins u with a vertex v of � not adjacent with u. The graph G�so obtained is again a counterexample, because the edge AB cannot appear on any k-pathconsisting of minor vertices only. But G� has one edge more than G, which contradictsthe maximality of G. This completes the proof of Claim (�).Let M be a subgraph of G induced by major vertices of G. Since M is also a planegraph, it contains a vertex x such that(5.1) degM (x) � 5:On the other hand, because x is major, we havedegG(x) � 5k + 1:Due to Claim (�) there is a subgraph of G on the vertex x and its neighbours that is a wheelwith degG(x) spokes. The ends of spokes di�erent from x form a cycle with at least 5k+1vertices. Among them there are at most �ve major vertices, by (5.1). By the pigeonholeprinciple, there is a path on the wheel consisting of k minor vertices, a contradiction.(b) The sharpness of the bound. Now we shall construct a 3-connected plane graphG in which every k-path has a vertex u of degree at least 5k. The construction beginswith the dodecahedron. Into each of its 5-faces we insert a new vertex x and join it toall vertices incident with this face. The result is a graph all faces of which are triangles[xyz] with deg(x) = 5 and deg(y) = deg(z) = 6. Into every triangle of this graph we inserta subdivided 3-star consisting of a central vertex v and three paths px; py; pz from v tox; y; z, respectively, with px of length �k+22 � and py and pz of length �k�22 �. Now makex adjacent to all vertices of px and py; and similarly make y adjacent to all of py and pz,and z adjacent to all of pz and px. Observe that in the resulting graph G all the verticesx have degree 5k, the vertices y and z have degrees at least 6k� 6 and every other vertexhas degree at most 6. It is easy to see that each k-path contains at least one vertex of typex; y or z. �



16 S.JENDROl' AND H.-J. VOSSA natural question arises whether every 3-connected graph G having a copy of a con-nected graph H di�erent from a path must also contain a copy of H such that its verticeshave bounded degrees in G. The answer is surprisingly negative. Fabrici and Jendrol'provedTheorem 5.2 [FJ2]. If H is a connected plane graph other than a path and m is aninteger greater than jV (H)j. Then there is a 3-connected planar graph T such that eachcopy of H in T has a vertex y with degT (y) � m:Proof. Augment H to a triangulation To with vertex set V (H). Into each triangle [uvw]of To insert a wheel with a central vertex z and with m spokes zxi for 1 � i � m. Jointhe vertex u to xi for 1 � i � bm3 c, the vertex v to xj for bm3 c � j � b 2m3 c, and the vertexw to x1 and to xt for b 2m3 c � t � m. The result is the desired triangulation T . One caneasily check that each vertex of T that lies in To has degree at least m in T , as does thecenter of each inserted wheel. The vertices of degrees less than k induce m-cycles in T .Therefore, as H is not a path, each copy of H in T contains at least one vertex of degree� m. �Recently Madaras improved Theorem 5.1 by showing the following result.Theorem 5.3 [Ma1]. If G is a 3-connected plane graph containing a vertex of degree atleast k, where k is a positive integer, then G contains a k-path Pk such that k� 1 verticesof Pk have degree at most 52k, and the remaining vertex has degree at most 5k in G. �6. MAXIMUM DEGREE PROBLEMSThe problems mentioned in the previous sections suggest the formulation of more generalproblems.Problem 6.1. Let H be a family of graphs and let H be a connected graph that is aproper subgraph of at least one member of H. Let '(H;H) be the smallest integer k withthe property that every graph G in H, that contains H contains a copy of H whose verticesall have degree at most k in G. Determine the value of '(H;H) for given H and H.If such a '(H;H) does not exist then we write '(H;H) = +1. If '(H;H) < +1, thenwe call the graph H light in the family H.Here we consider the family H = P(�; �) of all 3-connected plane graphs (i.e. the familyof all polyhedral graphs [G1]) with minimum vertex degree at least � and minimum facesize at least �, where � and � are at least 3. In the sequel, let'(�; �;H) = '(H;P(�; �))and '(�; ��;H) = '(H;P(�; ��)):



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 17The result for P1 derived from Euler's formula can be rewritten as '(3; 3;P1) = 5.Kotzig [Ko1] (see also Section 3) proved that each graph G 2 P(3; 3) contains an edgee with w(e) � 13. This implies '(3; 3;P2) = 10: Theorem 4.1 provides '(3; 3;P3) = 15:Fabrici and Jendrol' (see Section 5) generalized the results for P1; P2 and P3 to arbitraryPk. Their Theorem 5.1 states that the path Pk is light in the family P(3; 3) for every k.Next theorem sumarizes results concerning the constant '(Pk;G) for several families of3-connected plane graphs G. (Brackets indicate the papers, where the results are proved.)Theorem 6.1.(i) '(3; 3;Pk) = 5k for all k � 1: [FJ1](ii) '(4; 3;Pk) = 5k � 7 for all k � 8: [FHJW](iii) 5 �k2� � '(3; 4;Pk) � 52k for all k � 2: [HJT](iv) 5k � 325 � '(5; 3;Pk) � 5k � 7 for all k � 68: [Fa1](v) 53k � 80 � '(3; 5;Pk) � 53k for all k � 935: [JO](vi) 2k + 2 � '(Pk;F) � 2k + 3 for all k � 2. [HW](Here F is the family of 4-connected planar graphs) �Note that the precise values of '(4; 3;Pk) are known also for all k � 7, see [FHJW]. Wecan also show that the lower bound in (iv) cannot be smaller than 5k� 125 if k � 714 andthat the upper bound in (v) is valid for all k � 2.Theorem 5.2 asserts that no connected planar graph distinct from a k-path Pk for everyk is light in the family P(3; 3). This motivates the followingProblem 6.2. For a given in�nite family G of plane graphs determine all connected planargraphs that are light in G. �The next theorem provides results of this type.Theorem 6.2. If G 2 fP(3; 3);P(3; 4);P(4; 3);Fg, where F is the family of 4-connectedplanar graphs, then a graph H is light in the family G if and only if H is k-path Pk forsome k � 1. �The proof of Theorem 6.2 for the family P(3; 4) is by Harant, Jendrol' and Tk�a�c [HJT],for P(4; 3) by Fabrici, Hexel, Jendrol' and Walther [FHJW], and for the family F by Mohar[Mo1].In the graph families P(3; 3);P(3; 4); and P(4; 3) only the paths Pk are light. Thesituation changes signi�cantly in the families P(5; 3) and P(3; 5). From Theorem 6.1 itfollows that each path Pk; k � 1, is light in both families P(5; 3) and P(3; 5).Next theorem excludes some families of graphs to be lightTheorem 6.3 [Fa1], [JMST], [JO].(i) No plane connected graph H with maximum degree at least 5 or with a blockhaving at least 11 vertices is light in P(5; �3) (and, hence, in P(5; 3)).(ii) No plane connected graph H with maximum degree at least 4 or with a blockhaving at least 19 vertices is light in P(3; 5). �From the classical result of Lebesgue [Le] (see Theorem 2.1) it follows that the 3-cycle C3is light in P(5; 3) and the 5-cycle C5 is light in P(3; 5). Recently Jendrol' and Madaras in



18 S.JENDROl' AND H.-J. VOSS[JM] proved that the starK1;r for r � 3 is light in P(5; 3) if and only if r 2 f3; 4g. However,the problem of determining all graphs that are light in P(5; 3) and P(3; 5) remains open.Jendrol' et al. [JMST] proved the following theoremTheorem 6.4 [JMST]. The r-cycle Cr is light in the family P(5; �3) of all plane triangu-lations with minimum degree 5 if and only if 3 � r � 10. Moreover'(C3) = 7; '(C4) = 10; '(C5) = 10;10 � '(C6) � 11; 15 � '(C7) � 17; 15 � '(C8) � 29;19 � '(C9) � 41; 20 � '(C10) � 415;where '(Ck) = '(5; �3;Ck): �In [He] there is a question for which k � 11 the cycle Ck is light in the family of all5-connected plane triangulation. The answer is rather surprisingTheorem 6.5 [HS]. The k-cycle Ck is light in the family of all 5-connected plane trian-gulation for every k at least 3. �Hexel and Sot�ak conjecture that for every k � 3 the k-cycle Ck is light in the family of all5-connected planar graphs. More results concerning light graphs in subfamilies of planegraphs with high connectivity can be found in [Mo1] and [HW].An analogue of Theorem 6.4 for the family P(3; �5) isTheorem 6.6 [JO]. The r-cycle Cr is light in the family P(3; �5) if and only if r 2f5; 8; 11; 14g. Moreover '(3; �5;C5) = 5, 6 � '(3; �5;C8) � 7, 10 � '(3; �5;C11) � 11and 10 � '(3; �5;C14) � 17. �By Theorem 6.6 the only cycles that are candidates for being light in P(3; 5) areC5; C8; C11 and C14. As we mentioned above, C5 is light in this family. In [JO] thecycles C8 and C11 are proved to be not light there. It is an open question whether C14 islight in P(3; 5).The 3-cycle is light in P(5; 3) and not light in P(4; 3). The question arises for whichsubclasses other than P(5; 3) the 3-cycle is light? Let P(4; 3; Et) denote the family of allgraphs in P(4; 3) having no path consisting of t vertices all having degree 4. Borodin[Bo12] showed that the triangle C3 is light in P(4; �3; Et) for all t � 1. Mohar, �Skrekovski,and Voss [M�SV] showed that the cycle C4 is light in P(4; 3; Et) for t 2 f2; 3; 4g; so C4 islight in P(4; 3; Et) for 1 � t � 4. Further, C4 is not light in P(4; 3; Et) for all t � 23. For5 � t � 22 this question is open. For r � 5 and t � 3 the cycle Cr is not light in P(4; 3; Et).For t = 2 Mohar, �Skrekovski, and Voss showedTheorem 6.7 [M�SV]. The r-cycle Cr is light in the family P(4; 3; E2) of all 3-connectedplane graphs of minimum degree at least 4 and edge-weight at least 9 if and only if r 2f3; 4; 5; 6g. Moreover, '(4; 3; E2;C3) = 12; '(4; 3; E2;C4) � 22;'(4; 3; E2;C5) � 107; '(4; 3; E2;C6) � 107:



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 19�From a theorem of Borodin [Bo1] follows: '(5; 3;C3) = 7. Sot�ak (oral communication)proved '(5; 3;C4) = 11 and '(5; 3;C5) = 10. The proof that '(5; 3; C6) � 107 is by Moharet al. [M�SV]. The lightness of the 7-cycle in P(5; 3) is proved by Madaras et al. [Ma�SV].Together with Theorem 6.7, these results implyTheorem 6.8. The r-cycle Cr is light in P(5; 3) if r 2 f3; 4; 5; 6; 7g, and is not light inP(5; 3) if r � 11. Moreover,'(5; 3;C3) = 7; '(5; 3;C4) = 11; '(5; 3;C5) = 10; '(5; 3;C6) � 107; '(5; 3;C7) � 359: �It is an open question whether in the class P(5; 3) the cycles C8; C9; C10 are light ornot.Jendrol' and Madaras [JM] showed for r � 3 that the star K1;r is light in P(5; 3) if andonly if r 2 f3; 4g. Mohar, �Skrekovski, and Voss [M�SV] proved that this is also true in theclass P(4; 3; E2). For t � 3 the only star that is light in P(4; 3; Et) is K1;3, see [M�SV].7. MAXIMUM DEGREE OF LIGHT FAMILIESIn section 6 we have de�ned a light subgraph H in a family H of graphs. Here weintroduce the concept of a light class L of graphs in a family H of graphs.Problem 7.1. Let H be a family of graphs, and let L be a �nite family of connectedgraphs having the property that every member of L is a proper subgraph of at least onemember of H. Let '(L;H) be the smallest integer t with the property that every graphG in H that has a subgraph belonging to L, has such a subgraph whose vertices all havedegree at most t in G. Determine the value '(L;H) for a given pair of families L and H.If such a '(L;H) does not exist, then we write '(L;H) = +1. If '(L;H) < +1,then we call the family L light in the family H. When L is the family Tk of all trees on kvertices, and H = P(�; �), we write �(k; �; �) for '(Tk;P(�; �)):Obviously, T1 = fP1g; T2 = fP2g; T3 = fP3g; and fPkg � Tk for all k � 4. Hence�(k; �; �) = '(�; �;Pk) for 1 � k � 3; and �(k; �; �) � '(�; �;Pk). For P(3; 3) Fabrici andJendrol' proved:Theorem 7.1 [FJ3].(i) �(1; 3; 3) = 5;(ii) �(2; 3; 3) = 10;(iii) �(k; 3; 3) = 4k + 3 for any k � 3:The theorem can be reformulated, as follows:Theorem 7.1�. Every 3-connected planar graph G of order at least k � 3 has a connectedsubgraph K of order k such that the degree in G of every vertex of K is at most 4k + 3.The bound 4k + 3 is best possible. �If the minimum degree of graphs of H is increased to 4 then a slightly smaller bound isobtained by Fabrici.



20 S.JENDROl' AND H.-J. VOSSTheorem 7.2 [Fa1]. �(k; 4; 3) = 4k � 1 for any k � 4. �In the paper [HW] of Hexel and Walther and that of Hexel [He] the reader can �ndseveral bounds on �(k; �; �).Here we provide a result that gives a necessary condition for a �xed family L of connectedplane graphs to be light in P(3; 3).Theorem 7.3. If L is a �nite family of connected plane graphs H such that 4(H) � 3or �(H) � 2, then '(L;P(3; 3)) = +1. That means that L is not light in P(3; 3).Proof. Let K be the disjoint union of all graphs from the family L. Let To be a planetriangulation of K, that is the graph obtained from K by inserting necessary edges intoK to obtain a plane triangulation. The rest is the same as in the proof of Theorem 5.2,using K as H and m arbitrarily large. �Corollary 7.3.1. If L is a light family in P(3; 3) then L contains a k-path for some k. �Theorem 7.1 leads to the following problem:Problem 7.2. Find an optimal set Sk of trees on k vertices such that '(Sk;P(3; 3)) =4k + 3:Applying Theorems 5.1 and 7.1 we can easily get the following.Theorem 7.4. If L = fPk; K1;3g, then '(L;P(3; 3)) = 4k + 3: �The next theorem generalizes this result. For i � 0, let Si denote a generalized 3-starwith a central vertex of degree 3, where the three paths with common endpoint have i+1vertices. Obviously, S0 = K1 and S1 = K1;3.Theorem 7.5 [JV11]. Let k and i be integers with k � 3 and 1 � i � k2 . If Li = fPk; Sig,then '(Li; P (3; 3)) = minf5k; 4(k+ i)� 1g: �8. WEIGHT PROBLEMSFor a graph H contained in a graph in a family H, one can also consider the smallestinteger w(H;H) having the property that every graph G 2 H that contains a copy of Hwhose vertices have degrees in G that sum to at most w(H;H). For a subgraph K of G,let wG(K) = Pv2V (K)degG(v); this is called the weight of K in G, (see e.g. [G3]).Similarly w(H;H) can be called the weight of H in H, and we say that the graph His light in H if w(H;H) is �nite. Note that wG(K) and 'G(K) refer to the sum and themaximum over the same �nite set. Thus w(H;H) is �nite if and only if '(H;H) is �niteand the two de�nitions of a light graph are equivalent. Now we formulateProblem 8.1. Find the precise value of w(H;H) for a given graph H and a family ofgraphs H.The precise value w(H;H) is known only for a few light graphs (and families). We startour survey with a beautiful recent result of Mohar [Mo1].



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 21Theorem 8.1 [Mo1]. Let Pham be the family of all planar hamiltonian graphs. Thenw(Pk;Pham) = 6k � 1; k � 1:Proof. For a planar hamiltonian graph H on n vertices, let Cn be a hamiltonian cyclethrough vertices v1; v2; :::; vn in order. Let Ri be the part of Cn on vertices vi; vi+1; :::;vi+k�1 (indices modulo n). Let w(Ri) = i+k�1Pj=i degH(vj) denote the weight of Ri in H(that is the sum of degrees in H of vertices of Ri). ThennXi=1 w(Ri) = k Xv2V (H) deg(v) = 2kjE(H)j � 2k(3n� 6):The last inequality is the well known corollary (2.4) of Euler's formula. Hence, one ofthe paths, say Rj , has weight at most 2k(3n� 6)=n. Since this is less than 6k, we obtainw(Pk;Pham) � 6k�1. On the other hand, there are 5-connected plane triangulations whichcontain precisely 12 vertices of degree 5, and all other vertices are 6-vertices.Moreover, the5-vertices are as far away from each other as we like. This shows that w(Pk;Pham) � 6k�1and completes the proof. �Clearly 2-connected outerplanar graphs are hamiltonian. When using the idea of Moharone can prove that every 2-connected outerplanar has a k-path of the weight at most 4k�1.The next theorem is by Fabrici [Fa2].Theorem 8.2 [Fa2]. Let O(2) be the family of all 2-connected outerplanar graphs. Thenfor every k � 3 '(Pk;O(2)) = k + 3 and w(Pk;O(2)) = 4k � 2: �Fabrici, Harant, and Jendrol' [FHJ] further developed the ideas of Mohar's proof to showthat an upper bound that is linear in k also holds for a wider family of plane graphs.Theorem 8.3 [FHJ]. For G 2 P(�; �) let c(G) be the length of a longest cycle of G. Letk be an integer 3 � k � c(G). If c(G) � �jV (G)j for some positive number �, then Gcontains a k-path Pk such thatwG(Pk) � �� 2��� 2 � �� 1� + �� k � 1: �For the families P(�; �), only trivial bounds on w(�; �;H) are known except in a fewcases. Trivially, w(�; �;H) � jV (H)j'(�; �;H)where w(�; �;H) = w(H;P(�; �)). This yields e.g. w(5; 3;Pk) � w(4; 3;Pk) � 5k2� 7k, fork � 8, see [FHJW]. Also w(3; 4;Pk) � 52k2, see [HJT] and w(3; 5;Pk) � 53k2, see [JO].[Je3] Jendrol' formulated the following problem



22 S.JENDROl' AND H.-J. VOSSProblem 8.2. Determine the precise value of w(3; 3;Pk).The precise values are known up to k = 3 : w(3; 3;P1) = 5, w(3; 3;P2) = 13 (Kotzig[Ko1]), and w(3; 3;P3) = 21 (Ando et al. [AIK]). The bounds on w(3; �;Pk) for 3 � � � 5in the next theorem are due to Fabrici, Harant and Jendrol' [FHJ]. The lower bound incase (i) is by Fabrici and Jendrol' [FJ3].Theorem 8.4 [FHJ]. Let k be an integer, k � 4. Then(i) k log2 k � w(3; 3;Pk) � k2 + 13k:(ii) 12k log2 k +O(k) � w(3; 4;Pk) � 12(k2 + 13k):(iii) 18k log2 k +O(k) � w(3; 5;Pk) � 13(k2 + 13k): �Let us notice that there is a contrast between hamiltonian and nonhamiltonian planargraphs. Mohar's Theorem 8.1 provides a sharp linear upper bound while constructions byFabrici and Jendrol' [FJ3] show that the exact value of w(3; 3;Pk) is not linear. We believethat w(�; �;Pk) = O(k log2 k). Mohar [Mo] has constructed 3-connected planar graphsproving that w(4; 3;Pk) � 916k log2 k and w(5; 3;Pk) � 310k log2 k.Due to a result of Tutte [Tu] that every 4-connected planar graph is hamiltonian The-orem 8.1 has the following corollaryTheorem 8.5 [Mo1]. Every n-vertex 4-connected planar graph contains a k-path Pk ofweight � 6k � 1 for every 1 � k � n. Moreover, this bound is tight. �Problem 8.2 can be formulated more generallyProblem 8.4. Determine the precise value of w(�; �;H) for all light graphs H in thefamily P(�; �) for all possible pairs (�; �).The known precise results concerning this problem not mentioned in Section 4 are listedhere: Theorem 2.1 of Lebesgue yield: w(3; 5;P4) = 12, and w(3; 5;P5) = 17. Jendrol' andMadaras [JM] proved w(5; 3;P4) = w(5; 3;K1;3) = 23, and recently Borodin and Woodall[BW1] showed that w(5; �3;C4) = 25, and w(5; �3;C5) = 30; and w(5; 3;K1;4) = 30. Madaras[Ma2] proved that w(4; �3;P4) � 31 and w(5; �3;P5) = 29.Analogously we can de�ne the value w(L;H) for a �nite family of connected graphs Land a family H having the properties mentioned in Section 7. Namely, every member ofL is a proper subgraph of at least one member of H. Let w(L;H) be the smallest integert with the property that every graph G in H that has a subgraph belonging to L has sucha subgraph H whose vertices have degrees in G such that sum to at most w(L;H).A nice result recently published by Enomoto and Ota can be read as follows: "Every3-connected planar graph G of order at least k contains a connected subgraph H of orderk such that the degree sum of vertices of H in G is at most 8k� 1." More precisely, usingour notation, they provedTheorem 8.6 [EO]. Let k be an integer, and Tk be the family of all trees on k vertices.If k � 4, then 8k � 5 � w(Tk;P(3; 3)) � 8k � 1



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 238k � 5 � w(Tk;P(4; 3)) � 8k � 37k� 4 � w(Tk;P(5; 3)) � 7k� 2: �They expect the following to be trueConjecture 8.5 [EO]. If k is an integer and k � 4, thenw(Tk;P(3; 3)) = 8k�5: �Madaras and �Skrekovski [M�S] investigated the conditions related to weight of a �xedsubgraph of plane graphs that can enforce the existence of light graphs in families of planegraphs. For the families of plane graphs and triangulations whose edges are of weight atleast w they study the necessary and su�cient conditions for lightness of certain graphsaccording to values of w. We like some of their results:Theorem 8.7 [M�S]. Let R(w) be the family of all planar graphs of minimum degree atleast 3 whose edges are of weight at least w.(i) The 4-path P4 is light in R(w) if and only if 8 � w � 13.(ii) The k-cycle Ck; k 2 f3; 4g, is light in R(w) if and only if 10 � w � 13.(iii) The star K1;4 is light in R(w) if and only if 9 � w � 13. �9. LIGHT SUBGRAPHS OF GRAPHS EMBEDDED ON SURFACESIn this section we discuss light subgraphs of connected graphs embedded into surfacesother than the plane. First we recall necessary terms.Throughout this section we use terminology of [MT]. However, we recall some de�-nitions. An orientable surface Sg of genus g is obtained from the sphere by adding ghandles. Correspondingly, a nonorientable surface Nq of genus q is obtained from thesphere by adding q crosscaps. The Euler characteristic is de�ned by�(Sg) = 2� 2g and �(Nq ) = 2� q:By a surface M we mean either an orientable surface Sg or a nonorientable surface Nq . Bythe genus g (the nonorientable genus q) of a graph G we mean the smallest integer g (q)such that G has an embedding into Sg (Nq , respectively).If a graph G is embedded in a surface M then the connected regions of M � G arecalled the faces of G. If each face is an open disc then the embedding is called a 2-cellembedding. If each vertex has degree at least 3 and each vertex of degree h is incident withh di�erent faces then G is called a map in M . If, in addition, G is 3-connected and theembedding has "representativity" at least three, then G is called a polyhedral map in M ,see e.g. Robertson and Vitray [RV]. Let us recall that the representativity (or face width)of a (2-cell) embedded graph G into a surface M is equal to the smallest number k suchthat M contains a noncontractible closed curve that intersects the graph G in k points.We say that H is a subgraph of a polyhedral map G if H is a subgraph of the underlyinggraph of the map G.For a map G let V (G); E(G) and F (G) be the vertex set, the edge set and the face setG, respectively. For a map G on a surface M Euler's famous formula statesjV (G)j � jE(G)j+ jF (G)j = �(M ):In 1990, Ivan�co [Iv] generalized the Theorem 3.1 of Kotzig in the following way:



24 S.JENDROl' AND H.-J. VOSSTheorem 9.1 [Iv]. If G is a connected graph of orientable genus g and minimum degreeat least 3, then G contains an edge e of weightw(e) � � 2g + 13 for 0 � g � 34g + 7 for g � 3:Furthermore, if G does not contain 3-cycles, thenw(e) � � 8 for g = 04g + 5 for g � 1:Moreover, all bounds are best possible. �An analogous result for graphs on non-orientable surfaces proved by Jendrol' and Tuh�ar-sky [JTu] is as followsTheorem 9.2 [JTu]. If G is a connected graph of minimum degree at least 3 on a non-orientable genus q � 1, then G contains an edge e of weightw(e) � 8><>: 2q + 11 for 1 � q � 2;2q + 9 for 3 � q � 5;2q + 7 for q � 6:Furthermore, if G does not contain 3-cycles, thenw(e) � 4q + 5 for q � 1Moreover, all bounds are best possible. �For the projective plane, the nonorientable surface of the smallest genus, using the sameideas as in the proof of Theorem 3.1, one can easily proveTheorem 9.3. Every connected projective planar graph of minimum degree at least 3contains a (3; a)-edge with 3 � a � 10, or a (4; b)-edge with 4 � b � 7 or a (5; c)-edge with5 � c � 6. The bounds 10, 7, and 6 are best possible. �The bounds in Theorem 9.1 and 9.2 can be esentially improved if embedded graphs havea "large" number of vertices. Namely, the following holds:Theorem 9.4 [JTV]. Let G be a normal map on surface M of Euler characteristic �(M ) �0 and let n be the number of vertices of G. If(a) P(degG(x)� 6) > 48j�(M )j, or(b) n > 26j�(M )j,then G contains an (a; b)-edge such that(i) a = 3 and 3 � b � 12, or(ii) a = 4 and 4 � b � 8, or(iii) 5 � a � 6 and 5 � b � 6.The bounds 12, 8, and 6 are best possible. �Nothing seems to be done in the following



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 25Problem 9.1. Find an analogue of Theorem 3.3 for polyhedral maps on manifolds M ofEuler characteristics �(M ) � 0.For the projective plane, Sanders established sharp inequalities.Theorem 9.5 [Sa]. Every normal projective planar map satis�es the following inequality:40e3;3 + 25e3;4 + 16e3;5 + 10e3;6 + 203 e3;7 + 5e3;8 + 52e3;9 + 2e3;10+ 503 e4;4 + 11e4;5 + 5e4;6 + 53e4;7+ 163 e5;5 + 2e5;6 � 60 �and each of these coe�cients is best possible.In Theorem 9.3 we have the same coe�cients as in the planar case (Theorem 3.2), buton the right side the value 120 has been weakened to 60.In the subclass of all normal projective planar graphs with minimum degree at least4 we have e3;j = 0 for 3 � j � 10. Sanders proved that in the resulting inequality allcoe�cients are best possible.Theorem 9.6 [Sa]. Every normal projective plane map of minimum degree four satis�esthe inequality 50e4;4 + 33e4;5 + 15e4;6 + 5e4;7 + 16e5;5 + 6e5;6 � 180;and each of these coe�cients is best possible. �Theorem 9.7 [Sa]. Every projective planar graph of minimum degree �ve satis�es theinequality 16e5;5 + 7e5;6 � 210;and each of these coe�cients is best possible. �If in Theorem 9.5 we use e4;j = 0 for 4 � j � 7 then an inequality is obtained whichdi�ers in the coe�cient of e5;5.Theorem 9.8 [Sa]. Every projective plane graph of minimum degree �ve satis�es theinequality 18f5;5;5 + 9f5;5;6 + 5f5;5;7 + 4f5;6;6 � 72;and each of these coe�cients is best possible. �Euler's formula implies (with some terms left out) 3v3+2v4+v5 � 12 for the plane and3v3+2v4+v5 � 6 for the projective plane. Most of the above inequalities di�er only on theright side, where 12 appears for the normal plane graphs and 6 for the normal projectiveplanar graphs. This is completely true if the minimum degrees are 3 or 4, respectively.The only inequality that does not follow precisely these lines is the light edge inequalityfor graphs of minimum degree �ve. For the plane, the coe�cient of e5;5 went from 8=15



26 S.JENDROl' AND H.-J. VOSSto 7=15. For the projective plane, it is lowered from 8/15 to 16=35. Each other coe�cientof the inequalities in the projective planar case is equal to the corresponding coe�cient inthe plane case.Using the same arguments as for the planar case it is possible to prove the followinganalogues of Theorem 3.1 and Theorem 7.1Theorem 9.9 [FJ3]. Every 3-connected projective planar graph G that contains a k-pathcontains such a path whose vertices all have degree at most 5k in G. The bound 5k is bestpossible. �Theorem 9.10 [JV5]. For all k � 3 every 3-connected projective planar graph G of orderat least k contains a connected subgraph H of order k whose vertices all have degree atmost 4k + 3 in G. �We generalized these and other results on light subgraphs to surfaces M with nonpositiveEuler characteristic. For details on these results, see [JV10]. In the next subsections wegive a brief survey only. We mention that all other theorems of Section 7 are also true for3-connected projective planar graphs.Theorem 9.11 [JV1]. Each polyhedral map G on M that contains a k-path contains sucha k-path whose vertices all have degree at most k�(5 +p49� 24�(M ))=2� in G. Equalityholds for even k. �Let Kn and K�n denote the complete graph on n vertices and the graph obtained fromit by deleting one edge, respectively. For odd k we can show:Theorem 9.12 [JV4]. For each odd k greater than 43 �5+p49�24�(M )2 �+ 1:(i) the upper bound in Theorem 9.11 is attained at in�nite many orientable surfacesand at in�nite nonorientable surfaces, where these surfaces are characterized bythe fact that each of these surfaces has a triangular embedding of a K�n ;(ii) the upper bound in Theorem 9.11 is not attained at in�nite many orientable sur-faces and at in�nite many nonorientable surfaces, where these surfaces are charac-terized by the fact that each of these surfaces has a triangular embedding of a K�n(in this case an upper bound is$�k � 13� 5 +p49� 24�(M )2 % : �A polyhedral map G is called large if it has a large number of vertices or large positivek-charge, where the positive charge of G is PdegG(u)>6k(degG(u)� 6k).Theorem 9.13 [JV2], [JV3]. Every large polyhedral maps on a surface M of nonpositiveEuler characteristic that contains a k-path contains such a k-path whose vertices all have



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 27degree, in G, at most 6k for k = 1 or even k � 2 and at most 6k � 2 for odd k � 3.Moreover, these bounds are tight. �The upper bound on maximum degree of vertices of light paths polyhedral maps on asurface M depends on pj�(M )j. In arbitrary embedding of 3-connected graphs (multi-graphs) in M this degree bound is a linear function of j�(M )j.Theorem 9.14 [JV6]. Each 3-connected multigraph G on M without loops and 2-facesthat has a k-path contains such a k-path whose vertices have degree at most (6k� 2")(1+j�(M )j=3) in G, where " = 0 if k � 2 is even, and " = 1 if k � 3 is odd. The bounds arebest possible. �Theorem 9.15 [JV7]. For 3-connected graphs on M the precise degree bound is2 + b(6k � 6� 2")(1 + j�(M )j=3)c for k � 4: �Fabrici, Hexel, Jendrol', and Walther [FHJW] proved that each 3-connected plane graphof minimum degree at least 4 that has k-path contains such a k-path whose vertices allhave degree at most 5k � 7 in G. This bound is sharp for k � 8. For surfaces other thanthe plane, we haveTheorem 9.16 [JV8]. For k � 8, each large polyhedral map G on M of minimum degreeat least 4 that contains a k-path contains such a k-path whose vertices have degree at most6k� 12 in G. This bound is sharp for even k, and it must be at least 6k� 14 for odd k. �In 3-connected plane graphs of minimum degree at least 5 only the bound 5k�7 [FHJW]is known. For large polyhedral maps on 2-manifolds M , the degree bound is not a linearfunction on k.Theorem 9.17 [JV8]. Let k be an integer at least 66. Each large polyhedral map Gon M of minimum degree at least 5 that contains a k-path contains such a k-path whoseall vertices have degree at most 6k � log2 k + 2. Moreover, the exact bound is at least6k � 72 log2 k � 132. �In families of polyhedral maps of Theorem 9.10, 9.12 and 9.15 and in embeddingsof 3-connected multigraphs (Theorem 9.13), and in embeddings of 3-connected graphs(Theorem 9.14) only k-paths are light for every k.In the families of large polyhedral maps of minimum degree at least 5 on surfaces ofnonpositive genus one can prove the existence of other light graphs. So the cycle C3 islight there (see [JV12]), all proper spanning subgraphs H of the complete graph K4 arelight there, while K4 itself is not light (see [JV13]). The 5-cycle C5 and the 5-cycle withone or two diagonals are light in this class as well (see [JV14]). For other results see [JV9].Fabrici and Jendrol' [FJ3] proved that each 3-connected plane graph G of order at leastk contains a connected subgraph of order k whose vertices all have degree at most 4k+ 3.We have proved that this also holds for the projective plane. For polyhedral maps on M ,the degree bound for connected subgraphs of order k again depends on pj�(M )j. (Thisresult is not presented here). For polyhedral maps with many vertices we proved



28 S.JENDROl' AND H.-J. VOSSTheorem 9.18 [JV5]. For k � 2, each polyhedral map on M having at least (8k2 + 6k�6)j�(M )j + 1 vertices contains a connected subgraph of order k whose vertices all havedegree at most 4k + 4. This bound is best possible. �For polyhedral maps the bound depends on pj�(M )j. In arbitrary embeddings of 3-connected graphs (multigraphs) in M the bound is a linear function of j�(M )j.Theorem 9.19 [JV6]. For k � 2 each 3-connected multigraph G on M that has no loopsor 2-faces and has order at least k contains a connected subgraph of order k whose verticesall have degree at most �(4k + 4)(1 + j�(M )j3 )� in G. This bound is sharp. �Theorem 9.20 [JV7]. For 3-connected graphs on M , the precise degree bound is2 + ��4k � 2��1 + j�(M )j3 �� for k � 5: �Theorem 9.21 [JV6]. For both large 3-connected multigraphs on M without loops and2-faces and for large 3-connected graphs on M having at least k � 2 vertices the precisedegree bound is 4k + 4. �We �nish this section with an analogue of Theorem 8.6 recently proved by Kawarabaya-shi et al. [KNO].Theorem 9.22 [KNO]. For any non-spherical surface M , any positive integer t there existpositive integers r(M ) and n0 = n0(M ; t) such that if G is a n vertex, n � n0, 3-connectedgraph embedded into M with representativity r(M ), then G has a connected subgraph Hof t vertices such that wG(H) � Xv2V (H) degG(v) � 8t� 1:10. RELATED TOPICSThe concept of the weight of an edge, of a face, of a path, or of a cycle as presentedin this survey has served as a starting point for research in several other directions. Webrie
y mention some of them.1. The idea of light edges was used by P. Erd�os who formulated in 1990 at the conferencein Prachatice (Czechoslovakia) the following max-min problem (see [IJ]): For a graphG = (V;E) its edge weight w(G) is de�ned as minfw(e)je 2 Eg. Let G(n;m) denote thefamily of all graphs with n = jV j vertices and m = jEj edges. Determine the valueW (n;m) = maxfw(G)jG 2 G(n;m)g:Ivan�co and Jendrol' [IJ] have proved some partial results. Recently Jendrol' and Schier-meyer [JS] have found a complete solution to Erd�os's question and characterized all graphson n vertices and m edges attaining this minimum weight.A graph G from G(n;m) having no isolated vertices is degree-constrained if a = 2mn < 2�,where a is the average degree of G and � = �(G) is minimum degree of G. Bose, Smid, and



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 29Wood [BSW] proved that every degree-constrained graph has an edge uv with both deg(u)and deg(v) at most bdc where d = a�2��a . Moreover they investigate matchings consistingof light edges in degree-constrained graphs.2. The idea of a light path has been considered also in the family of all K1;r-free graphs,r � 3, that are graphs without K1;r as an induced subgraph. Harant et al. [HJRR] provedamong others the following rather surprising result.Theorem 10.1 [HJRR]. If G is a K1;r-free graph on n vertices, where r � 3, then eachinduced path of length at least 2r�1 and each induced cycle of length at least 2r in G hasthe weight at most (2r�2)(n��0), where �o is the independence number of G. Moreover,this bound is tight. �3. For a polyhedral map G the p-vector is de�ned in [G1] to be a sequence p = (fiji � 3)where fi denotes the number of i-gonal faces of G. Rosenfeld [Ro] started to investigatethe problem of characterization of p-vectors of 3-connected non-regular plane graphs (i.e.non-regular polyhedral graphs) whose edges have the same, constant, weight. Jendrol' andJucovi�c [JJ] made �rst steps in dealing with this problem for polyhedral maps on orientablesurfaces. There is a lot of open problems in this topic, see e.g. [Je1], [JJ].4. Similarly, Jucovi�c [IT] suggested studying polyhedral maps with constant weight offaces. By the weight of a face � we mean the sum of degrees of vertices incident with �.All Platonic solids and all duals to Archimedean solids have constant face weights. Ivan�coand Trenkler [IT], and Hor�n�ak and Ivan�co [HI] determined the number of nonisomorphic3-connected plane graphs having prescribed face weight w. There are in�nitely many suchgraphs if and only if 16 � w � 21 or w = 23 or w = 25. There is exactly one such graph ifw = 9 or w = 11, for w = 14 there are four, and for w = 15 there are ten such graphs. Forother values of w at least 12 there are exactly two such graphs. For w = 10 no such graphexists. Nothing is known about polyhedral maps with constant face weight on surfacesother than the plane.5. The idea of the weight of an edge e = uv being the degree sum of the endverticesu and v motivated Jendrol' and Ryj�a�cek [JR] to introduce the concept of tolerance of theedge e. The tolerance �(e) of the edge e = uv is de�ned to be the absolute value of thedi�erence of degrees of the vertices u and v,�(e) = j deg(u)� deg(v)j:Necessary and su�cient conditions for the existence of connected planar and 3-connectedplanar graphs with constant edge tolerance appear in [JR]. Several constructions of graphswith constant edge tolerance for general graphs appear in Acharya and Vartak [AV]. Anopen problem is to �nd necessary and su�cient conditions for graphs with constant edgetolerance embedded into surfaces di�erent from the sphere.6. Motivated by "light" results, Mohar [Mo2] considered such problems for in�niteplanar graphs. He uses the discharging method to prove some new results in this direction.The general outline of the method is presented in [Mo2]. Many applications are given there,including results on light subgraphs and the following: Planar graphs with only �nitely



30 S.JENDROl' AND H.-J. VOSSmany vertices of degree at most 5 and with subexponential growth contain arbitrarily large�nite submaps of the tessellation of the plane or of some tessellation of the cylinder byequilateral triangles.7. We feel a need to write down few remarks concerning the Lebesgue theorem (Theorem2.1). It was published in 1940 but it remained unnoticed until 1967 when Ore's book [Or]appeared. Ore was aware of the importance of the theorem and therefore he includedit into his book together with a complete proof (using Lebesgue's theory of the Euler'scontributions) and with corrolaries. But only after its application in an Ore and Plummer's[OP] problem on cyclic coloring of plane graphs by Plummer and Toft [PT] the theoremstarted to attract people. (Note that the cyclic colouring is a colouring of vertices of planegraphs in such a way that the vertices incident with the same face receive di�erent colours.)To prove the conjecture of Plummer and Toft [PT], see also [JT], that every 3-connectedplane graph G has a cyclic colouring of its vertices with ��+2 colours, there were attemptsto improve some terms in the theorem. Here �� means the size of the largest face in G.Recall that the unavoidable set by Lebesgue's theorem (see Theorem 2.1) consists of sixin�nite series of faces, namely series of (3; b; c)-triangles for 3 � b � 6 and c � 3; (4; 4; c)-triangles for c � 4, and (3; 3; 3; d)-quadrangles for d � 3, and 126 individual faces. Hor�n�akand Jendrol' [HJ1] reduced two in�nite series of (3; b; c)-triangles for 5 � b � 6 and c � 5to �nite ones. Namely they proved the existence of an unavoidable set of con�gurationsconsisting of four in�nite series and 160 individual con�gurations.Note that, in general, none of in�nite series of (3; b; c)-triangles for 3 � b � 4; c � 3,(4; 4; c)-triangles for c � 4, and (3; 3; 3; d)-quadrangles for k � 3 can be omitted. In[HJ2] Hor�n�ak and Jendrol' replaced the serie of (4; 4; c)-triangles with few individual termstogether with a con�guration consisting of a chain of three quadrangles.On the other side Borodin [Bo14] succesfully reduced individual terms of the theoremto 95 by letting all six in�nite series (3; b; c)-triangles for 3 � b � 6, (4; 4; c)-triangles, and(3; 3; 3; c)-quadrangles, all with c � 3. In his paper [Bo14] Borodin posed the followingproblem: Find the best possible version(s) of Lebesgue's theorem.For other discussions concerning the Lebesgue theorems readers are recommended to[Bo14], [BoL], and [HJ1]. (For a present situation concerning the conjecture of Plummerand Toft, see e.g. [EHJ].)Acknowledgements.Support of Slovak VEGA Grant 1/0424/03 is acknowledged. The authors wish to thankthe anonymous referee for his careful reading of the paper and very detailed proposals thathelped to improve the presentation of the paper.References[AV] B. D. Acharya, M. N. Vartak, On the construction of graphs with given constant valence-di�erence (S) on each of their lines, Wiss. Z. TH Ilmenau 26 No. 6 (1977), 33{60.[ABG] B. A. Aksenov, O. V. Borodin, A. N. Glebov, On a structural property of plane graphs, Diskretn.Anal. Issled. Oper. Ser. 1, 7 (2000), 5{16, (Russian).[AIK] K. Ando, S. Iwasaki, A. Kaneko, Every 3-connected planar graph has a connected subgraph withsmall degree sum, Annual Meeting in Mathematical Society of Japan (1993), (Japanesse).



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 31[AH] K. Appel, W. Haken, Every planar map is four colorable, Contemp. Math. 98, Providence, RI:American Mathematical Society (AMS). XV, (1989), 751.[BLW] N. Z. Biggs, E. K. Lloyd, R. J. Wilson, Graph Theory 1736-1936, Clarendon Press, Oxford (1998).[Bo1] O. V. Borodin, Solution of problems of Kotzig and Gr�unbaum concerning the isolation of cyclesin planar graphs, Math. Notes 46 (1989), 9{12, (Russian).[Bo2] O. V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989),180{185.[Bo3] O. V. Borodin, Computing light edges in planar graphs, in Topics in Combinatories and GraphTheory (1990), 137{144, (R. Bodendieck and R. Henn Eds.) Physica-Verlag, Heidelberg.[Bo4] O. V. Borodin, Structural properties and colorings of plane graphs, Ann. Discrete Math. 51(1992), 31{37.[Bo5] O. V. Borodin, Precise lower bound for the number of edges of minor weight in planar maps,Math. Slovaca 42 (1992), 129{142.[Bo6] O. V. Borodin, Structural properties of planar maps with minimum degree 5, Math. Nachr. 158(1992), 109{117.[Bo7] O. V. Borodin, Joint extension of two theorems of Kotzig on 3-polytopes, Combinatorica 13(1993), 121{125.[Bo8] O. V. Borodin, Simultaneous coloring of edges and faces of plane graphs, Discrete Math. 128(1994), 21{33.[Bo9] O. V. Borodin, Triangles with resticted degree sum of their boundary vertices in plane graphs,Discrete Math. 137 (1995), 45{51.[Bo10] O. V. Borodin, More about the weight of edges in planar graphs, Tatra Mt. Math. Publ. 9 (1996),11{14.[Bo11] O. V. Borodin, Minimal vertex degree sum of a 3-path in plane maps, Discuss. Math. GraphTheory 17 (1997), 279{284.[Bo12] O. V. Borodin, Triangulated 3-polytopes without faces of low weight, Discrete Math. 186 (1998),281{285.[Bo13] O. V. Borodin, Colourings and topological representations of graphs, Diskretn. Anal. Issled. Oper.3 (1996), 3{27, (Russian).[Bo14] O. V. Borodin, An improvement of Lebesgue's theorem on the structure of minor faces of 3-polytopes, Diskretn. Anal. Issled. Oper. 9, No. 3 (2002), 29{35, (Russian).[BoL] O. V. Borodin, D. V. Loparev, The height of small faces in normal plane maps, Diskretn. Anal.Issled. Oper. 5 (1998), 6{17, (Russian).[BS] O. V. Borodin, D. P. Sanders, On light edges and triangles in planar graphs of minimum degree�ve, Math. Nachr. 170 (1994), 19{24.[BW1] O. V. Borodin, D. R. Woodall, Short cycles of low weight in normal plane maps with minimumdegree �ve, Discuss. Math. Graph Theory 18 (1998), 159{164.[BW2] O. V. Borodin, D. R. Woodall, Cyclic degrees of 3-polytopes, Graphs Combin. 15 (1999), 267{277.[BB] O. V. Borodin, H. Broersma, A. N. Glebov, J. van den Heuvel, The structure of plane trian-gulations in terms of clusters and stars, Diskretn. Anal. Issled. Oper. Ser. 1. 8 (2001), 15{39,(Russian).[BSW] P. Bose, M. Smid, D. R. Wood, Light edges in degree-constrained graph, Discrete Math., (sub-mitted 2002).[EHJ] H. Enomoto, M. Hor�n�ak, S. Jendrol', Cyclic chromatic number of 3-connected plane graphs, SIAMJ. Dicrete Math. Vol. 14 No. 1 (2001), 121{137.[EO] H. Enomoto, K. Ota, Connected subgraphs with small degree sum in 3-connected planar graphs,J. Graph Theory 30 (1999), 191{203.[Fa1] I. Fabrici, On Vertex-Degree Restricted Subgraphs in Polyhedral Graphs, Discrete Math. 256(2002), 105{114.[Fa2] I. Fabrici, Light graphs in families of outerplanar graphs, (submitted).[FJ1] I. Fabrici, S. Jendrol', An inequality concerning edges of minor weight in convex 3-polytopes,Discuss. Math. Graph Theory 16 (1996), 81{87.



32 S.JENDROl' AND H.-J. VOSS[FJ2] I. Fabrici, S. Jendrol', Subraphs with restricted degrees of their vertices in planar 3-connectedgraphs, Graphs Combin. 13 (1997), 245{250.[FJ3] I. Fabrici, S. Jendrol', Subgraphs with restricted degrees of their vertices in planar graphs, DiscreteMath. 191 (1998), 83{90.[FHJ] I. Fabrici, J. Harant, S. Jendrol', Paths of low weight in planar graph, (submitted).[FHJW] I. Fabrici, E. Hexel, S. Jendrol', H. Walther, On vertex-degree restricted paths in polyhedral graphs,Discrete Math. 212 (2000), 61{73.[Fr] P. Franklin, The four color problem, Amer. J. Math. 44 (1922), 225{236.[G1] B. Gr�unbaum, Convex polytopes, Interscience, New York (1967) or Springer, New York (2003),,Second Edition.[G2] B. Gr�unbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973), 390{408.[G3] B. Gr�unbaum, Polytopal graphs, in Studies in Graph Theory (D. R. Fulkerson, ed.), MAA Studiesin Mathematics 12 (1975), 201{224.[G4] B. Gr�unbaum, New views on some old questions of combinatorial geometry, Int. Teorie Combi-natorie, Rome, 1 (1976), 451{468.[GS] B. Gr�unbaum, G. C. Stephard, Analogues for tiling of Kotzig's theorem on minimal weights ofedges, Ann. Discrete Math. 12 (1982), 129{140.[HK] A. Hackmann, A. Kemnitz, List edge colorings of outerplanar graphs, Ars Combin. 60 (2001),181{185.[HJT] J. Harant, S. Jendrol', M. Tk�a�c, On 3-connected plane graphs without triangular faces, J. Combin.Theory Ser. B 77 (1999), 150{161.[HJRR] J. Harant, S. Jendrol', B. Randerath, Z. Ryj�a�cek, I. Schiermeyer, M. Voigt, On weight of inducedpaths and cycles in claw-free graphs, J. Graph Theory 36 (2001), 131{143.[H1] H. Heesch, Untersuchungen zum Vierfarbenproblem, Hochschulskriptum 810/a/b, Bibliographis-ches Institut, Manhaim 1969.[HM] J. van den Heuvel, S. McGuinnes, Coloring the square of a planar graph, J. Graph Theory 42(2003), 110{124.[He] E. Hexel, On light in the family of 4-connected planar graphs, Discrete Math. 251 (2002), 103{107.[HS] E. Hexel, R. Sot�ak, On light cycles in the family of 5-connected triangulation, Manuscript, June2003.[HW] E. Hexel, H. Walther, On vertex-degree restricted paths in 4-connected planar graphs, Tatra Mt.Math. Publ. 18 (1999), 1{13.[HI] M. Hor�n�ak, J. Ivan�co, On the number of 3-polytopes with constant face weight, Studia Sci Math.Hungar. 39 (2002), 1{19.[HJ1] M. Hor�n�ak, S. Jendrol', Unavoidable set of face types for planar maps, Discuss. Math. GraphTheory 16 (1996), 123-141.[HJ2] M. Hor�n�ak, S. Jendrol', On a Conjecture by Plummer and Toft, Inc. J. Graph Theory 30 (1999),177-189.[Iv] J. Ivan�co, The weight of a graph, Ann. Discrete Math. 51 (1992), 113{116.[IJ] J. Ivan�co, S. Jendrol', On extremal problems concerning weights of edges of graphs, Colloq. Math.Soc. J�anos Bolyai 60 Sets, Graphs and Numbers, Budapest (1992), 339{410.[IT] J. Ivan�co, M. Trenkler, 3-polytopes with constant face weight, Studia Sci. Math. Hungar. 35(1999), 1{15.[Je1] S. Jendrol', Convex 3-polytopes with constant edge weight, Colloq. Math. Soc. J�anos Bolyai 63Intuitive geometry, Szeged (Hungary, 1991) North Holland, Budapest (1994), 173{179.[Je2] S. Jendrol', A structural property of convex 3-polytopes, Geom. Dedicata 68 (1997), 91{99.[Je3] S. Jendrol', Light paths in 3-connected planar graphs (Problem 294), Discrete Math. 191 (1998),248.[Je4] S. Jendrol', A short proof of Kotzig's theorem on minimal edge weights of convex 3-polytopes,Proc. Internat. Scient. Conference of Math. (V. Balint Ed.) �Zilina (1999), 35{38.[Je5] S. Jendrol', Triangles with restricted degrees of their boundary vertices in plane triangulations,Discrete Math. 196 (1999), 177{196.



LIGHT SUBGRAPHS OF GRAPHS EMBEDDED IN .. . 33[Je6] S. Jendrol', Paths with restricted degrees of their vertices in planar graphs, Czechoslovak Math.J. 49 (1999), 481{490, (124).[JJ] S. Jendrol', E. Jucovi�c, On face-vectors of maps with constant weight of edges, Studia Sci. Math.Hungar. 17 (1982), 159{175.[JM] S. Jendrol', T. Madaras, On light subraphs in plane graphs of minimum degree �ve, Discuss.Math. Graph Theory 16 (1996), 207{217.[JO] S. Jendrol', P. Owens, On light graphs in 3-connected plane graphs without triangular or quad-rangular faces, Graphs Combin. 17 (2001), 659{680.[JR] S. Jendrol', Z. Ryj�a�cek, 3-polytopes of constant tolerance of edges, Comment. Math. Univ. Carolin.22,4 (1981), 843{850.[JS] S. Jendrol', I. Schiermeyer, On max-min problem concerning weights of edges, Combinatorica 21(2001), 351{359.[JTu] S. Jendrol', M. Tuh�arsky, A Kotzig type theorem for non-orientable surfaces, (submitted).[JV1] S. Jendrol', H.-J. Voss, A local property of polyhedral maps on compact 2-dimensional manifolds,Discrete Math. 212 (2000), 111{120.[JV2] S. Jendrol', H.-J. Voss, A local property of large polyhedral maps on compact 2-dimensionalmanifolds, Graphs Combin. 15 (1999), 303{313.[JV3] S. Jendrol', H.-J. Voss, Light paths with an odd number of vertices in large polyhedral maps, Ann.Comb. 2 (1998), 313{324.[JV4] S. Jendrol', H.-J. Voss, Light paths with an odd number of vertices in polyhedral maps, Czechoslo-vak Math. J. 50(120) (2000), 555{564.[JV5] S. Jendrol', H.-J. Voss, Subgraphs with restricted degrees of their vertices in large polyhedral mapson compact 2-manifolds, European J. Combin. 20 (1999), 821{832.[JV6] S. Jendrol', H.-J. Voss, Light subgraphs of multigraphs on compact 2-dimensional manifolds,Discrete Math. 233 (2001), 329{351.[JV7] S. Jendrol', H.-J. Voss, Two local and one global properties of 3-connected graphs on compact2-dimensional manifolds, J. Combin. Theory Ser. B, (submitted).[JV8] S. Jendrol', H.-J. Voss, Ligh paths in large polyhedral maps with prescribed minimum degree,Australas. J. Combin. 25 (2002), 79{102.[JV9] S. Jendrol', H.-J. Voss, Subgraph with restricted degrees of their vertices in polyhedral maps oncompact 2-manifolds, Ann. Comb. 5 (2001), 211-226.[JV10] S. Jendrol', H.-J. Voss, Light subgraphs of graphs embedded in 2-dimensional manifolds of Eulercharacteristic � 0 - a survey, In "Paul Erd�os and his Mathematics, I" (G. Hal�asz, L. Lov�asz,M. Simonovits, T. Sos, Eds.), Springer, Budapest (Hungary) 1999, Bolyai Society MathematicaeStudies, 11. Budapest (2002), 375{411.[JV11] S. Jendrol', H.-J. Voss, Light classes of generalized stars in polyhedral maps on surfaces, Discuss.Math. Graph Theory 24 (2004), 85{107.[JV12] S. Jendrol', H.-J. Voss, Light subgraphs of order � 3 in large maps of minimum degree 5 oncompact 2-manifold, European J. Combin., (to apear).[JV13] S. Jendrol', H.-J. Voss, Light subgraphs of order 4 in large maps of minimum degree 5 on compact2-manifold, Australas. J. Combin. 28 (2003), 171-199.[JV14] S. Jendrol', H.-J. Voss, The 5-cycle C5 is light in large maps of minimum degree 5 on compact2-manifolds, Bul. Acad. Stiinte Repub. Mold. Mat. 3(40) (2002), 106{124.[JTV] S. Jendrol', M. Tuh�arsky, H.-J. Voss, A Kotzig type theorem for large maps on surfaces, TatraMt. Math. Publ. 27 (2003), 153{162.[JMST] S. Jendrol', T. Madaras, R. Sot�ak, Z. Tuza, On light cycles in plane triangulations, Discrete Math.197/198 (1999), 453{467.[JT] T. R. Jensen, B. Toft, Graph coloring problems, John-Wiley Sons, New York (1995).[Ju1] E. Jucovi�c, Strengthening of a theorem about 3-polytopes, Geom. Dedicata 13 (1974), 233{237.[Ju2] E. Jucovi�c, Convex polytopes, Veda Bratislava, 1981, (Slovak).[KNO] K. Kawarabayashi, A. Nakamoto, K. Ota, Subgraphs of graphs on surfaces with high representa-tivity, J. Combin. Theory Ser. B 89 (2003), 207{229.



34 S.JENDROl' AND H.-J. VOSS[Ko1] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. �Cas SAV (Math. Slovaca) 5(1955), 111{113, (Slovak).[Ko2] A. Kotzig, From the theory of eulerian polyhedrons, Mat. �Cas SAV (Math. Slovaca) 13 (1963),20{34, (Russian).[Ko3] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979), 565{570.[Le] H. Lebesgue, Quelques cons�equences simples de la formule d'Euler, J. Math. Pures Appl. 19(1940), 27{43.[Ma1] T. Madaras, Note on weights of paths in polyhedral graphs, Discrete Math. 203 (1999), 267{269.[Ma2] T. Madaras, Note on the weight of paths in plane triangulation of minimum degree 4 and 5,Discuss. Math. Graph Theory 20 (2000), 173{180.[M�S] T. Madaras, R. �Skrekovski, Heavy paths, light stars, and big melons, Discrete Math., (to appear).[Ma�SV] B. Madaras, R. �Skrekovski, H.-J. Voss, The 7-cycle C7 is light in the family of planar graphswith minimum degree 5, Discrete Math., (to appear).[Mk] J. Malkevitch, Polytopal graphs, Selected topics in Graph theory 3 (L.W. Beineke and R.J. Wilson,Eds.), Academic Press London, (1988), 169{188.[Mo1] B. Mohar, Light paths in 4-connected graphs in the plane and other surfaces, J. Graph Theory34 (2000), 170{179.[Mo2] B. Mohar, Light structures in in�nite planar graphs without the strong isoperimetric property,Trans. Amer. Math. Soc. 354 (2002), 3059{3074.[MT] B. Mohar, C. Thomassen, Graphs on Surfaces, The Johns Hopkins University Press, Baltimoreand London (2001).[M�SV] B. Mohar, R. �Skrekovski, H.-J. Voss, Light subraphs in planar graphs of minimum degree 4 andedge-degree 9, J. Graph Theory 44 (2003), 261{295.[MS] M. Molloy, M. R. Salavatipour, A bound on the chromatic number of the square of a planargraph, Manuscript 2003.[Or] O. Ore, The four color problem, Academic Press, New York/London (1967).[OP] O. Ore, M. D. Plummer, Cyclic coloration of plane graphs, in Recent Progress in Combinatorics,W.T. Tutte, ed., Academic Press, New York (1969), 287{293.[Pl] M. D. Plummer, On the cyclic connectivity of planar graph (1972), Graph Theory and Applica-tion, Springer, Berlin, 235{242.[PT] M. D. Plummer, B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987), 507{515.[RV] N. Robertson, R. P. Vitray, Representativity of surface embeddings, in "Paths, Flows and VLSI- Layout" (B. Korte, L. Lov�asz, J. Pr�omel, and A. Schrijver, Eds.) Springer-Verlag, Berlin/NewYork (1990), 293{328.[RSST] N. Robertson, D. Sanders, P. Seymour, R. Thomas, The four-color theorem, J. Combin. TheorySer. B 70 (1997), 2{44.[Ro] M. Rosenfeld, Polytopes of constant weight, Israel J. Math. 21 (1975), 24{30.[Sa] D. P. Sanders, On light edges and triangles in projective planar graphs, J. Graph Theory 21(1996), 335{342.[SR] E. Steinitz, H. Rademacher, Vorlesung �uber die Theorie der Polyeder, Berlin (1934).[Tu] W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956), 99{116.[Wg] G. Wegner, Graphs with given diameter and a coloring problem, Technical report, University ofDortmund (1977).[WL1] W. Weifan, K.-W. Lih, Structural properties and edge choosability of planar graphs without 6-cycles, Combinatorics, Probability and Computing 10 (2001), 267{276.[We] P. Wernicke, �Uber den kartographischen Vierfarbensatz., Math. Ann. 58 (1904), 413{426.[WW] D. R. Woodall, R. J. Wilson, The Appel-Haken proof of the Four-Color Theorem, in "SelectedTopics in Graph Theory", (L.W. Beineke and R.J. Wilson, Eds.) Academic Press London-NewYork-San Francisko (1978), 83{101.[Za1] J. Zaks, Extending Kotzig's Theorem, Israel J. Math. 45 (1983), 281{296.[Za2] J. Zaks, Extending two theorems of A. Kotzig, Discrete Math. 43 (1983), 309{315.[Zi] G. M. Ziegler, Lectures on polytopes (1995), Grad. Texts in Math. 152, Springer-Verlag, Berlin.


