Topics in Combinatorics 2011

Homework 10 (due December 16)

1. In this exercise, we prove that if $\ell(\lambda) \leq n$, then

$$
\begin{equation*}
s_{\lambda}\left(1, q, \ldots, q^{n-1}\right)=q^{n(\lambda)} \prod_{x \in[\lambda]} \frac{1-q^{n+c(x)}}{1-q^{h(x)}} \tag{*}
\end{equation*}
$$

where $c(x)$ and $h(x)$ were defined in Homework 1, Problem 3.
(a) Show that if $x_{i}=q^{i-1}$ for $1 \leq i \leq n, x_{i}=0$ for $i>n$, and $\ell(\lambda) \leq n$,

$$
a_{\lambda+\delta}=\prod_{i<j}\left(q^{\lambda_{j}+n-j}-q^{\lambda_{i}+n-i}\right)=q^{n(\lambda)+\binom{n}{3}} \prod_{i<j}\left(1-q^{\lambda_{i}-\lambda_{j}-i+j}\right)
$$

and

$$
a_{\delta}=\prod_{i<j}\left(q^{n-j}-q^{n-i}\right)=q^{\binom{n}{3}} \prod_{i<j}\left(1-q^{j-i}\right) .
$$

(b) (Bonus problem.) Show that

$$
\prod_{x \in[\lambda]}\left(1-q^{h(x)}\right)=\frac{\prod_{i=1}^{n}(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{\lambda_{i}+n-i}\right)}{\prod_{i<j}\left(1-q^{\lambda_{i}-\lambda_{j}-i+j}\right)} .
$$

Hint: Add $n-i$ squares to the i-th row of $[\lambda]$, and write the number $\lambda_{i}+n-i-j+1$ in cell (i, j). What happens if you remove all columns j for j of the form $\lambda_{k}+n-k+1$ for some k ?
(c) Show that

$$
\prod_{x \in[\lambda]}\left(1-q^{n+c(x)}\right)=\prod_{i=1}^{n} \frac{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{\lambda_{i}+n-i}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n-i}\right)}
$$

(d) Use (a), (b) and (c) to prove formula $(*)$. Use ($*$) to find $s_{\lambda}\left(1, q, q^{2}, \ldots\right.$) and $s_{\lambda}(1, \ldots, 1)$ (n ones). Compare with Homework 5, exercise 1.
2. Let $p(n)$ denote the number of partitions of n. Prove that

$$
\operatorname{det}(p(i-j+1))_{1 \leq i, j \leq n}
$$

equals ± 1 or 0 , depending on whether n is a pentagonal number or not.
3. Show that under the specialization $h_{n} \mapsto X$ for $n \geq 1$, we have $s_{\lambda} \mapsto 0$ if $\lambda_{2}>1$, and if $\lambda=\left(a, 1^{b}\right)$, then $s_{\lambda} \mapsto X(X-1)^{b}$. Use this to prove that

$$
\sum_{\lambda} m_{\lambda}(x) X^{\ell(\lambda)}=\sum_{a \geq 1, b \geq 0} s_{\left(a, 1^{b}\right)}(x) X(X-1)^{b}
$$

Use this identity to reprove the expansion of $p_{n}^{(k)}$ in terms of Schur functions from Homework 9, Exercise 2b.

