Topics in Combinatorics 2011

Homework 11 (due December 23)

1. Suppose $\lambda \vdash n, \mu \vdash k \leq n$. Add $n-k$ copies of 1 to μ to obtain $\tau \vdash n$. Prove that

$$
\chi^{\lambda}(\tau)=\sum_{\nu \vdash k} f^{\lambda / \nu} \chi^{\nu}(\mu)
$$

2. Show that s_{δ} can be expressed as a polynomial in $\left\{p_{i}: i\right.$ odd $\}$.
3. The entries $K_{\lambda \mu}^{-1}$ of the matrix K^{-1} (inverse of the Kostka matrix K) are called inverse Kostka numbers. We have

$$
\begin{aligned}
m_{\lambda} & =\sum_{\mu} K_{\lambda \mu}^{-1} s_{\mu} \\
s_{\mu} & =\sum_{\lambda} K_{\lambda \mu}^{-1} h_{\lambda} .
\end{aligned}
$$

No simple formula for $K_{\lambda \mu}^{-1}$ is known, but there are formulas for special choices of λ and/or μ, such as the one that follows.
Prove that if $\mu=\left(a, 1^{b}\right)$ is a hook, then

$$
K_{\lambda \mu}^{-1}=(-1)^{\ell(\lambda)+\ell(\mu)} \frac{(\ell(\lambda)-1)!}{\prod_{i \geq 1} m_{i}(\lambda)!} \lambda_{a}^{\prime}
$$

Hint. Prove that $s_{\mu}=\sum_{i=0}^{b}(-1)^{i} h_{a+i} e_{b-i}$ and then use Problem 3a from Homework 6.

