Topics in Combinatorics 2011

Homework 12 (due January 20)

- 1. Prove that every Knuth equivalence class contains exactly one involution. Find the involution that is Knuth equivalent to w = 914362758.
- 2. Suppose that w maps to (P,Q) with the RSK algorithm. We know that w_0ww_0 maps to (evac(P), evac(Q)). What do ww_0 and w_0w map to? *Hint:* Use Greene's theorem to prove that the insertion tableau of ww_0 is P^T (the transpose of P).
- 3. Fix a tree t with n vertices and root r. Let S(v) denotes the shortest path from v to r. Let h(v) be the number of vertices v' such that $S(v) \subseteq S(v')$. E.g., h(r) = n, and h(v) = 1 for every leaf $v \neq r$. An increasing tree of shape t is a bijection $\gamma: t \to [n]$ such that $\gamma(v) < \gamma(v')$ for all vertices $v, v' \in t$ with $S(v) \subseteq S(v')$; note that this implies that $\gamma(r) = 1$. Prove that the number of increasing trees of shape t equals

$$\frac{n!}{\prod_{v \in t} h(v)}$$

4. In this exercise, we prove that the hook walk ends in corner (r, s) with probability

$$\frac{1}{n}\prod_{i=1}^{r-1} \left(1 + \frac{1}{h_{is} - 1}\right)\prod_{j=1}^{s-1} \left(1 + \frac{1}{h_{rj} - 1}\right),\tag{*}$$

which completes the proof of the hook-length formula.

(a) For a hook walk $(i_1, j_1) \to (i_2, j_2) \to \ldots \to (r, s)$ on the diagram, call $I = \{i_1, i_2, \ldots, r\}$ and $J = \{j_1, j_2, \ldots, s\}$ the *horizontal* and *vertical* projection. For nonempty sets $I \subseteq [r], J \subseteq [s]$ with max I = r and max J = s, denote by P(I, J) the probability that a hook walk that starts in $(\min I, \min J)$ has horizontal projection I and vertical projection J (in particular, it ends in (r, s)). Prove that

$$P(I,J) = \frac{1}{h_{\min I,\min J} - 1} (P(I \setminus \{\min I\}, J) + P(I, J \setminus \{\min J\}))$$
$$P(I, \{s\}) = \frac{1}{h_{\min I,s} - 1} P(I \setminus \{\min I\}, \{s\})$$
$$P(\{r\}, J) = \frac{1}{h_{r,\min J} - 1} P(\{r\}, J \setminus \{\min J\})$$

if |I| > 1 and |J| > 1.

(b) Use induction to prove that for nonempty sets $I \subseteq [r]$, $J \subseteq [s]$ with max I = r and max J = s,

$$P(I,J) = \prod_{i \in I \setminus \{r\}} \frac{1}{h_{is} - 1} \prod_{j \in J \setminus \{s\}} \frac{1}{h_{rj} - 1}$$

(c) Prove (*).