Topics in Combinatorics 2011

Homework 12 (due January 20)

1. Prove that every Knuth equivalence class contains exactly one involution. Find the involution that is Knuth equivalent to $w=914362758$.
2. Suppose that w maps to (P, Q) with the RSK algorithm. We know that $w_{0} w w_{0}$ maps to $(\operatorname{evac}(P), \operatorname{evac}(Q))$. What do $w w_{0}$ and $w_{0} w$ map to?
Hint: Use Greene's theorem to prove that the insertion tableau of $w w_{0}$ is P^{T} (the transpose of P).
3. Fix a tree t with n vertices and root r. Let $S(v)$ denotes the shortest path from v to r. Let $h(v)$ be the number of vertices v^{\prime} such that $S(v) \subseteq S\left(v^{\prime}\right)$. E.g., $h(r)=n$, and $h(v)=1$ for every leaf $v \neq r$. An increasing tree of shape t is a bijection $\gamma: t \rightarrow[n]$ such that $\gamma(v)<\gamma\left(v^{\prime}\right)$ for all vertices $v, v^{\prime} \in t$ with $S(v) \subseteq S\left(v^{\prime}\right)$; note that this implies that $\gamma(r)=1$. Prove that the number of increasing trees of shape t equals

$$
\frac{n!}{\prod_{v \in t} h(v)}
$$

4. In this exercise, we prove that the hook walk ends in corner (r, s) with probability

$$
\begin{equation*}
\frac{1}{n} \prod_{i=1}^{r-1}\left(1+\frac{1}{h_{i s}-1}\right) \prod_{j=1}^{s-1}\left(1+\frac{1}{h_{r j}-1}\right) \tag{*}
\end{equation*}
$$

which completes the proof of the hook-length formula.
(a) For a hook walk $\left(i_{1}, j_{1}\right) \rightarrow\left(i_{2}, j_{2}\right) \rightarrow \ldots \rightarrow(r, s)$ on the diagram, call $I=\left\{i_{1}, i_{2}, \ldots, r\right\}$ and $J=\left\{j_{1}, j_{2}, \ldots, s\right\}$ the horizontal and vertical projection. For nonempty sets $I \subseteq[r], J \subseteq[s]$ with $\max I=r$ and $\max J=s$, denote by $P(I, J)$ the probability that a hook walk that starts in $(\min I, \min J)$ has horizontal projection I and vertical projection J (in particular, it ends in (r, s)). Prove that

$$
\begin{aligned}
& P(I, J)=\frac{1}{h_{\min I, \min J}-1}(P(I \backslash\{\min I\}, J)+P(I, J \backslash\{\min J\})) \\
& P(I,\{s\})=\frac{1}{h_{\min I, s}-1} P(I \backslash\{\min I\},\{s\}) \\
& P(\{r\}, J)=\frac{1}{h_{r, \min J-1}} P(\{r\}, J \backslash\{\min J\}) \\
& \text { if }|I|>1 \text { and }|J|>1 .
\end{aligned}
$$

(b) Use induction to prove that for nonempty sets $I \subseteq[r], J \subseteq[s]$ with $\max I=r$ and $\max J=s$,

$$
P(I, J)=\prod_{i \in I \backslash\{r\}} \frac{1}{h_{i s}-1} \prod_{j \in J \backslash\{s\}} \frac{1}{h_{r j}-1} .
$$

(c) Prove (*).

