Topics in Combinatorics 2011

Homework 1 (due October 14)

1. A partition λ is odd (respectively distinct) if all its parts are odd (resp. distinct). Denote by $o(n)$ (resp. $d(n))$ the number of odd (resp. distinct) partitions of n. Find the generating functions

$$
\sum_{n \geq 0} o(n) x^{n} \quad \text { and } \quad \sum_{n \geq 0} d(n) x^{n}
$$

Your computation should show that the number of odd partitions of size n is equal to the number of distinct partitions of size n. Find a bijective proof of this statement.
2. Take the Ferrers diagram of a partition with distinct parts. Denote by k the smallest part, and by s the rightmost 45 degree line of the diagram. In other words, $s=\max \left\{i: \lambda_{j}=\lambda_{1}+1-j\right.$ for $\left.j \leq i\right\}$. If $k>s$, take the rightmost 45 degree line and move it to form a new row. Otherwise, move the bottom row to form a new rightmost 45 degree line. This gives a new partition into distinct parts except in certain special cases. Find those special cases and show how this implies the pentagonal number theorem

$$
\prod_{n=1}^{\infty}\left(1-x^{n}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} x^{k(3 k-1) / 2}
$$

Use this theorem to find a recursive formula for $p(n)$.
3. For λ a partition, define the hook length of a cell $x=(i, j) \in[\lambda]$ by $h(x)=$ $h(i, j)=\lambda_{i}+\lambda_{j}^{\prime}-i-j+1$ and the content of x by $c(x)=c(i, j)=j-i$.
(a) Draw two diagrams of 5332 and fill one with hook lengths and the other one with contents. Why do we call $h(x)$ the hook length?
(b) Prove that

$$
\sum_{x \in[\lambda]} h(x)=n(\lambda)+n\left(\lambda^{\prime}\right)+|\lambda| .
$$

(c) Prove that

$$
\sum_{x \in[\lambda]} c(x)=n\left(\lambda^{\prime}\right)-n(\lambda)
$$

(d) Prove that

$$
\sum_{x \in[\lambda]}\left(h^{2}(x)-c^{2}(x)\right)=|\lambda|^{2} .
$$

Hint. Use induction on $|\lambda|$.

