Topics in Combinatorics 2011

Homework 2 (due October 21)

1. Recall that we defined a metric d on K[[x]] by

$$d(a,b) = 2^{-\min\{i: a_i \neq b_i\}}$$

for $a \neq b$. Prove the following statements.

- (a) The metric space (K[[x]], d) is complete.
- (b) We have $a^{(k)} \to a$ if and only if $v(a^{(k)} a) \to \infty$.
- (c) Recall that if x = (0, 1, 0, 0, ...), $a = (a_n)_{n \in \mathbb{N}}$ and $F(x) = \sum_{n \in \mathbb{N}} a_n x^n$ are equal in K[[x]]. Prove that the sum $\sum_{k=1}^{\infty} F_k(x)$ converges if and only if $v(F_k(x)) \to \infty$, and that the product $\prod_{k=1}^{\infty} (1 + F_k(x))$, where $F_k(0) = 1$ for all k, converges if and only if $v(F_k(x)) \to \infty$.
- 2. Prove that composition of formal power series is associative. More precisely, prove that if G(0) = H(0) = 0, then $F \circ (G \circ H) = (F \circ G) \circ H$. Then prove that $(\{F \in K[[x]]: v(F) = 1\}, \circ)$ is a group.
- 3. A permutation $\pi \in \mathfrak{S}_n$ is called an *involution* if $\pi^2 = \text{id.}$ Let a_n denote the number of involutions in \mathfrak{S}_n .
 - (a) Prove that $a_0 = a_1 = 1$ and $a_n = a_{n-1} + (n-1)a_{n-2}$ for $n \ge 2$.
 - (b) Use (a) to find the exponential generating function for a_n .
- 4. A permutation w is called alternating if $w_1 > w_2 < w_3 > w_4 < \ldots$, and reverse alternating if $w_1 < w_2 > w_3 < w_4 > \ldots$
 - (a) Prove that the number of alternating permutations of \mathfrak{S}_n is equal to the number of reverse alternating permutations of \mathfrak{S}_n .
 - (b) Denote the number of (reverse) alternating permutations of \mathfrak{S}_n by E_n . Prove that

$$2E_{n+1} = \sum_{k=0}^{n} \binom{n}{k} E_k E_{n-k}.$$

(c) Denote the generating function

$$\sum_{n\geq 0} E_n \frac{x^n}{n!}$$

by y. Prove that

$$2y' = y^2 + 1, \qquad y(0) = 1.$$

- (d) Solve the differential equation from (c).
- (e) Find Taylor expansion for $\tan x$ and $1/\cos x$.