Topics in Combinatorics 2011

Homework 2 (due October 21)

1. Recall that we defined a metric d on $K[[x]]$ by

$$
d(a, b)=2^{-\min \left\{i: a_{i} \neq b_{i}\right\}}
$$

for $a \neq b$. Prove the following statements.
(a) The metric space $(K[[x]], d)$ is complete.
(b) We have $a^{(k)} \rightarrow a$ if and only if $v\left(a^{(k)}-a\right) \rightarrow \infty$.
(c) Recall that if $x=(0,1,0,0, \ldots), a=\left(a_{n}\right)_{n \in \mathbb{N}}$ and $F(x)=\sum_{n \in \mathbb{N}} a_{n} x^{n}$ are equal in $K[[x]]$. Prove that the sum $\sum_{k=1}^{\infty} F_{k}(x)$ converges if and only if $v\left(F_{k}(x)\right) \rightarrow \infty$, and that the product $\prod_{k=1}^{\infty}\left(1+F_{k}(x)\right)$, where $F_{k}(0)=1$ for all k, converges if and only if $v\left(F_{k}(x)\right) \rightarrow \infty$.
2. Prove that composition of formal power series is associative. More precisely, prove that if $G(0)=H(0)=0$, then $F \circ(G \circ H)=(F \circ G) \circ H$. Then prove that $(\{F \in K[[x]]: v(F)=1\}, \circ)$ is a group.
3. A permutation $\pi \in \mathfrak{S}_{n}$ is called an involution if $\pi^{2}=\mathrm{id}$. Let a_{n} denote the number of involutions in \mathfrak{S}_{n}.
(a) Prove that $a_{0}=a_{1}=1$ and $a_{n}=a_{n-1}+(n-1) a_{n-2}$ for $n \geq 2$.
(b) Use (a) to find the exponential generating function for a_{n}.
4. A permutation w is called alternating if $w_{1}>w_{2}<w_{3}>w_{4}<\ldots$, and reverse alternating if $w_{1}<w_{2}>w_{3}<w_{4}>\ldots$
(a) Prove that the number of alternating permutations of \mathfrak{S}_{n} is equal to the number of reverse alternating permutations of \mathfrak{S}_{n}.
(b) Denote the number of (reverse) alternating permutations of \mathfrak{S}_{n} by E_{n}. Prove that

$$
2 E_{n+1}=\sum_{k=0}^{n}\binom{n}{k} E_{k} E_{n-k} .
$$

(c) Denote the generating function

$$
\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}
$$

by y. Prove that

$$
2 y^{\prime}=y^{2}+1, \quad y(0)=1
$$

(d) Solve the differential equation from (c).
(e) Find Taylor expansion for $\tan x$ and $1 / \cos x$.

