Topics in Combinatorics 2011

Homework 3 (due October 28)

1. Find the exponential generating function of the number of permutations of n letters that have an odd number of cycles, each of which is of even length.
2. Fix the integer k. Let $f(n, k)$ be the number of permutations of n letters whose cycle lengths are all divisible by k. Find a simple, explicit expression for the exponential generating function for $(f(n, k))_{n \geq 0}$. Find a simple explicit formula for $f(n, k)$.
3. Find the exponential generating function for the number of labeled bipartite graphs.
Hint: First count 2-colored bipartite graphs, i.e. labeled bipartite graphs with a coloring of the vertices in two colors with the property that connected vertices are colored with different colors.
4. In this exercise, we prove Cayley's theorem: t_{n}, the number of labeled trees on n vertices, equals n^{n-2}. Show that the left-hand side of

$$
n^{2} t_{n}=n^{n}
$$

counts directed paths (possibly of zero length) of labeled vertices with some trees (possibly trivial ones with one vertex) hanging from them. Show that the right-hand side counts collections of directed cycles (possibly of zero length) of labeled vertices with some trees (possibly trivial ones with one vertex) hanging from them. Find a bijection between both types of objects.
Note: A more famous bijective proof of Cayley's theorem is via Prüfer codes.

