Topics in Combinatorics 2011

Homework 6 (due November 18)

1. Use sage to find all 12 transition matrices between the bases $\left\{m_{\lambda}: \lambda \vdash 7\right\}$, $\left\{e_{\lambda}: \lambda \vdash 7\right\},\left\{h_{\lambda}: \lambda \vdash 7\right\},\left\{p_{\lambda}: \lambda \vdash 7\right\}$ of Λ^{7}. Which of the matrices have only non-negative integers as elements?
2. For $f \in \Lambda^{n}$, define $f_{k} \in \Lambda^{n k}$ by

$$
f_{k}\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{1}^{k}, x_{2}^{k}, \ldots\right) .
$$

Show that

$$
\omega f_{k}=(-1)^{n(k-1)}(\omega f)_{k} .
$$

3. (a) Prove that

$$
h_{n}=\sum_{\lambda \vdash n} \epsilon_{\lambda}\binom{\ell(\lambda)}{\left.m_{1}(\lambda), m_{2}(\lambda), \ldots\right)} e_{\lambda} .
$$

(b) Define the forgotten symmetric function $f_{\lambda}=\omega\left(m_{\lambda}\right)$. Prove that

$$
f_{\lambda}=\epsilon_{\lambda} \sum_{\mu} a_{\lambda \mu} m_{\mu}
$$

where $a_{\lambda \mu}$ is the number of all distinct permutations $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of the sequence $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ such that for every $j, \mu_{1}+\ldots+\mu_{j}=$ $\alpha_{1}+\ldots+\alpha_{i}$ for some $i=i(j)$.

