Topics in Combinatorics 2011

Homework 8 (due December 2)

1. Express $\sum_{\tau \vdash n}(1-t)^{\ell(\tau)-1} m_{\tau}$ in terms of Schur functions.
2. (a) Prove that the number of paths of length n that start in $(0,0)$, do not go below the x-axis, and have only steps of the form $(1,1)$ and $(1,-1)$, equals $\binom{n}{\lfloor n / 2\rfloor}$.
Hint. If a path goes below the x-axis and $(i,-1)$ is the first point on the line $y=-1$, reflect the part of the path on $[i, n]$ with respect to $y=-1$.
(b) Prove that

$$
\sum_{\lambda} f^{\lambda}=\binom{n}{\lfloor n / 2\rfloor},
$$

where the sum on the left is over all $\lambda \vdash n$ with $\ell(\lambda) \leq 2$.
3. (a) Prove that

$$
\sum_{\lambda \vdash n} f^{\lambda}=\left|\left\{w \in \mathfrak{S}_{n}: w^{2}=\mathrm{id}\right\}\right|
$$

(b) Prove that

$$
\prod_{i} \frac{1}{1-x_{i}} \prod_{i<j} \frac{1}{1-x_{i} x_{j}}=\sum_{\lambda} s_{\lambda}(x) .
$$

