Topics in Combinatorics 2011

Homework 9 (due December 9)

1. (a) Let $w \in \mathfrak{S}_{n}, w^{2}=\mathrm{id}, w \stackrel{\text { RSK }}{\longmapsto}(P, P)$. Prove that the number of columns of P of odd length is equal to the number of fixed points of w.
Hint: Let $\nu(i, j), 0 \leq i, j \leq n$, be the partition in position (i, j) of the growth diagram of w. Prove that the number of odd parts of $\nu(i, i)^{\prime}$ is equal to the number of fixed points k of w with $k \leq i$.
(b) Verify the identity

$$
\prod_{i} \frac{1}{1-q x_{i}} \prod_{i<j} \frac{1}{1-x_{i} x_{j}}=\sum_{\lambda} q^{c(\lambda)} s_{\lambda}(x),
$$

where $c(\lambda)$ denotes the number of odd parts of λ^{\prime}. What do we get if we plug in $q=0$ into the equality from (b)?
2. (a) In Homework 8, problem 3, you showed that

$$
\sum_{\lambda} f^{\lambda}=\binom{n}{\lfloor n / 2\rfloor},
$$

where the sum on the left is over all $\lambda \vdash n$ with $\ell(\lambda) \leq 2$. Expand $s_{\lceil n / 2\rceil} s_{\lfloor n / 2\rfloor}$ and rederive this result.
(b) In Homework 5, problem 2, we defined $p_{n}^{(k)}=\sum_{\lambda} m_{\lambda}$, where the sum is over $\lambda \vdash n$ of length k, and you showed that

$$
p_{n}^{(k)}=\sum_{a+b=n}(-1)^{a-k}\binom{a}{k} e_{a} h_{b}
$$

Use this result to express $p_{n}^{(k)}$ in terms of Schur functions.

