Topics in Combinatorics 2011

Homework 9 (due December 9)

1. (a) Let $w \in \mathfrak{S}_n$, $w^2 = \operatorname{id}$, $w \stackrel{\text{RSK}}{\longmapsto} (P, P)$. Prove that the number of columns of P of odd length is equal to the number of fixed points of w.

Hint: Let $\nu(i, j)$, $0 \le i, j \le n$, be the partition in position (i, j) of the growth diagram of w. Prove that the number of odd parts of $\nu(i, i)'$ is equal to the number of fixed points k of w with $k \le i$.

(b) Verify the identity

$$\prod_i \frac{1}{1-qx_i} \prod_{i < j} \frac{1}{1-x_i x_j} = \sum_{\lambda} q^{c(\lambda)} s_{\lambda}(x),$$

where $c(\lambda)$ denotes the number of odd parts of λ' . What do we get if we plug in q = 0 into the equality from (b)?

2. (a) In Homework 8, problem 3, you showed that

$$\sum_{\lambda} f^{\lambda} = \binom{n}{\lfloor n/2 \rfloor},$$

where the sum on the left is over all $\lambda \vdash n$ with $\ell(\lambda) \leq 2$. Expand $s_{\lceil n/2 \rceil} s_{\lfloor n/2 \rfloor}$ and rederive this result.

(b) In Homework 5, problem 2, we defined $p_n^{(k)} = \sum_{\lambda} m_{\lambda}$, where the sum is over $\lambda \vdash n$ of length k, and you showed that

$$p_n^{(k)} = \sum_{a+b=n} (-1)^{a-k} \binom{a}{k} e_a h_b.$$

Use this result to express $p_n^{(k)}$ in terms of Schur functions.