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1 Permutation groups and group actions

1.1 What is a permutation and how does one present it

• Definition of a permutation: A permutation of a set Ω is a bijective
mapping from Ω onto itself.

• Tabular form of a permutation: We may write a permutation in
tabular form. For example:

g =

(
1 2 3 4 5 6
3 6 5 4 1 2

)
,

meaning 1 maps to 3, 2 to 6, 3 to 5, etc.

• Cyclic form of a permutation: But usually we write a permutation
as a product of disjoint cycles or in a cyclic form. For example:

g = (1, 3, 5)(2, 6)(4) = (5, 1, 3)(2, 6)(4) = (3, 5, 1)(6, 2)(4) = . . .

where g is as abve.

• Cycles of a permutation: The sequences (1, 3, 5), (2, 6) and (4) of
the above g are called the cycles of the permutation g. The above g
thus consists of one cycle of length 3, one cycle of length 2 and one
cycle of length 1.

• Cyclic permutation: A permutation that has only one cycle of
length larger than 1 is called a cyclic permutation (or also a cycle).

• Omitting cycles of length 1: When presenting a permutation, we
sometimes omit cycles of length 1. We could thus write the above g
also as

g = (1, 3, 5)(2, 6).

• The set of all permutations: The set of all permutations of Ω is
denoted by Sym(Ω).

• Exponential notation: Henceforth, if ω ∈ Ω and g ∈ Sym(Ω), then
we write the image of ω under g as ωg, rather than g(ω).
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1.2 Multiplying permutions and the symmetric group

• Composition of permutations: Since permutations on Ω are function
from Ω to Ω, we have a naturally defined operation of the usual
composition of functions.

• Example of composition: If Ω = {1, 2, 3, 4, 5}, g = (1, 3, 4)(2, 5)
and h = (2, 4, 5), then

g ◦ h = (1, 3, 4, 2) and h ◦ g = (1, 3, 5, 4).

• Left symmetric group: The operation ◦ turns the set Sym(Ω) into
a group, which will be denoted SymL(Ω).

• Inverse composition: But we shall rather work with the operation
of inverse composition defined as:

· : Sym(Ω)× Sym(Ω)→ Ω, · : (g, h) 7→ h ◦ g.

• Composition vs. inverse composition: Note that

g ◦ h = h · g

and that
ω(g·h) = (ωg)h while ω(g◦h) = (ωh)g.

for every ω ∈ Ω and g, h ∈ Sym(Ω).

• The right symmetric group: The operation of inverse composition
also turns the set Sym(Ω) into a group, which we will denote SymR(Ω).

• Our heart is on the right: Henceforth, we shall always work with
SymR(Ω). We will often omit the symbolsR, call the inverse composition
the product of permutations. As usual in group theory, we shall also
omit the symbol · and write gh instead of g · h.

• Transpositions and what they generate: A permutation of the
form (α, β) is called a transposition. Each permutation can be written
as a product of transpositions. In other words, the set of all transpositions
on Ω generates Sym(Ω)
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• Even and odd permutations: If g can be written as a product of an
odd number of transposition, then it cannot we written as a product of
even number of transpositions and vice versa. This allows as to define
the notion of odd permutation and even permutation. The set of all
even permutations of Ω forms a subgroup of Sym(Ω), which will be
denoted by Alt(Ω).

1.3 Examples of permutation groups

We shall use the symbol [n] to denote the set of positive integers not exceeding
n.

• Alternating groups: Alt(Ω) = “the set of all even permutations on Ω”;

• Cyclic groups: Cyc(n) = 〈(1, 2, . . . , n)〉 with Ω = [n];

• Dihedral groups: Dih(n) = 〈(1, 2, . . . , n), (1)(2, n − 1)(3, n − 2) · · · 〉
with Ω = [n]

• Groups of affine transformations of a ring: For a commutative ring R
with identity, let Aff(R) = {x 7→ ax + b : a ∈ R∗, b ∈ R}; then this is
a permutation group on the set R. Note that |Aff(R) = |R| |R∗|. For
example: Aff(Z3) = Sym(Z3).

• The projective special group PSL(2, q): Let F be a field of prime power
order q and let PGL(2, q) = {x 7→ ax+b

cx+d : a, c ∈ F∗, b, d ∈ R, ad −
bcnot = 0} as a permutation group on F ∪ {∞}. Here we interpret
a∞+b
c∞+d as ac−1 and k

0 for k 6= 0 as ∞.

• The subgroup of PGL(2, q) consisting of functions satisfying ad− bc =
1, is denoted PSL(2, q).

1.4 Exercises

Exercise.

1. Find the cyclic form of the permutation g : Ω→ Ω given by:

(a) Ω = {1, 2, 3, 4, 5, 6, 7, 8} and

g =

(
1 2 3 4 5 6 7 8
3 2 7 4 8 5 1 6

)
,
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(b) Ω = Z7, the ring of remainders after division by 7, and g(x) = 2x +
1. (Which “linear functions” h : Zn → Zn, ha,b(x) = ax + b, are
permutions, how many cycles do they have and what are the lengths?)

2. Show that SymL(Ω) and SymR(Ω) are isomorphic.

3. Let Ω and ∆ be two sets of equal cardinality. Show that Sym(Ω) ∼= Sym(∆).

4. Let the lengths of cycles of g be d1, d2, . . . , dk. What is the order of g? (Recall
that the order of a group element g is the smallest positive integer m such
that gm = id).

5. If g, h ∈ Sym(Ω), then we call the product g−1hg a conjugate of h (by g) and
write it as hg. Compute hg for h = (1, 2, 3)(4, 5)(6, 7) and

• g = (0, 1, 2, 3, 4, 5, 6, 7),

• g = (1, 2),

• g = (1, 2)(4, 5).

What is the general pattern for computing conjugates?

6. Let Ω = {ω1, ω2, . . . , ωn} and g = (ω1, ω2, . . . , ωn) a cyclic permutation on Ω.
Determine the centraliser and the normaliser of the cyclic group 〈g〉 generated
by g.

7. Show that two permutations g, h ∈ Sym(Ω) are conjugate in Sym(Ω) whenever
they have the same number of cycles of length k for every possible cycle length
k.

8. Determine the order of PSL(2, q). To which well known groups are PSL(2, 2),
PSL(2, 3), PSL(2, 4) and PSL(2, 5) isomorphic to? Find the corresponding
isomorphisms.


