1 Permutation groups and group actions

- 1.1 What is a permutation and how does one present it
 - **Definition of a permutation**: A *permutation of a set* Ω is a bijective mapping from Ω onto itself.
 - **Tabular form of a permutation**: We may write a permutation in tabular form. For example:

meaning 1 maps to 3, 2 to 6, 3 to 5, etc.

• Cyclic form of a permutation: But usually we write a permutation as a *product of disjoint cycles* or *in a cyclic form*. For example:

$$g = (1,3,5)(2,6)(4) = (5,1,3)(2,6)(4) = (3,5,1)(6,2)(4) = \dots$$

where g is as abve.

- Cycles of a permutation: The sequences (1,3,5), (2,6) and (4) of the above g are called the *cycles of the permutation* g. The above g thus consists of one cycle of length 3, one cycle of length 2 and one cycle of length 1.
- Cyclic permutation: A permutation that has only one cycle of length larger than 1 is called a *cyclic permutation* (or also a *cycle*).
- Omitting cycles of length 1: When presenting a permutation, we sometimes omit cycles of length 1. We could thus write the above g also as

$$g = (1, 3, 5)(2, 6).$$

- The set of all permutations: The set of all permutations of Ω is denoted by $Sym(\Omega)$.
- Exponential notation: Henceforth, if $\omega \in \Omega$ and $g \in \text{Sym}(\Omega)$, then we write the image of ω under g as ω^g , rather than $g(\omega)$.

1.2 Multiplying permutions and the symmetric group

- Composition of permutations: Since permutations on Ω are function from Ω to Ω , we have a naturally defined operation of the usual *composition* of functions.
- Example of composition: If $\Omega = \{1, 2, 3, 4, 5\}, g = (1, 3, 4)(2, 5)$ and h = (2, 4, 5), then

 $g \circ h = (1, 3, 4, 2)$ and $h \circ g = (1, 3, 5, 4)$.

- Left symmetric group: The operation \circ turns the set Sym (Ω) into a group, which will be denoted Sym_L (Ω) .
- **Inverse composition**: But we shall rather work with the operation of *inverse composition* defined as:

$$\cdot : \operatorname{Sym}(\Omega) \times \operatorname{Sym}(\Omega) \to \Omega, \quad \cdot : (g, h) \mapsto h \circ g.$$

• Composition vs. inverse composition: Note that

$$g \circ h = h \cdot g$$

and that

$$\omega^{(g \cdot h)} = (\omega^g)^h$$
 while $\omega^{(g \circ h)} = (\omega^h)^g$.

for every $\omega \in \Omega$ and $g, h \in \text{Sym}(\Omega)$.

- The right symmetric group: The operation of inverse composition also turns the set $\operatorname{Sym}(\Omega)$ into a group, which we will denote $\operatorname{Sym}_{R}(\Omega)$.
- Our heart is on the right: Henceforth, we shall always work with $\operatorname{Sym}_R(\Omega)$. We will often omit the symbols R, call the inverse composition the *product of permutations*. As usual in group theory, we shall also omit the symbol \cdot and write gh instead of $g \cdot h$.
- Transpositions and what they generate: A permutation of the form (α, β) is called a *transposition*. Each permutation can be written as a product of transpositions. In other words, the set of all transpositions on Ω generates Sym (Ω)

• Even and odd permutations: If g can be written as a product of an *odd* number of transposition, then it cannot we written as a product of *even* number of transpositions and vice versa. This allows as to define the notion of *odd permutation* and *even permutation*. The set of all even permutations of Ω forms a subgroup of Sym(Ω), which will be denoted by Alt(Ω).

1.3 Examples of permutation groups

We shall use the symbol [n] to denote the set of positive integers not exceeding n.

- Alternating groups: $Alt(\Omega) =$ "the set of all even permutations on Ω ";
- Cyclic groups: $Cyc(n) = \langle (1, 2, ..., n) \rangle$ with $\Omega = [n];$
- Dihedral groups: Dih $(n) = \langle (1, 2, \dots, n), (1)(2, n 1)(3, n 2) \cdots \rangle$ with $\Omega = [n]$
- Groups of affine transformations of a ring: For a commutative ring R with identity, let $\operatorname{Aff}(R) = \{x \mapsto ax + b : a \in R^*, b \in R\}$; then this is a permutation group on the set R. Note that $|\operatorname{Aff}(R) = |R| |R^*|$. For example: $\operatorname{Aff}(\mathbb{Z}_3) = \operatorname{Sym}(\mathbb{Z}_3)$.
- The projective special group PSL(2, q): Let \mathbb{F} be a field of prime power order q and let $PGL(2, q) = \{x \mapsto \frac{ax+b}{cx+d} : a, c \in \mathbb{F}^*, b, d \in R, ad - bcnot = 0\}$ as a permutation group on $\mathbb{F} \cup \{\infty\}$. Here we interpret $\frac{a\infty+b}{c\infty+d}$ as ac^{-1} and $\frac{k}{0}$ for $k \neq 0$ as ∞ .
- The subgroup of PGL(2, q) consisting of functions satisfying ad bc = 1, is denoted PSL(2, q).

1.4 Exercises

EXERCISE.

- 1. Find the cyclic form of the permutation $g \colon \Omega \to \Omega$ given by:
 - (a) $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and

- (b) $\Omega = \mathbb{Z}_7$, the ring of remainders after division by 7, and g(x) = 2x + 1. (Which "linear functions" $h: \mathbb{Z}_n \to \mathbb{Z}_n$, $h_{a,b}(x) = ax + b$, are permutions, how many cycles do they have and what are the lengths?)
- 2. Show that $\operatorname{Sym}_{L}(\Omega)$ and $\operatorname{Sym}_{R}(\Omega)$ are isomorphic.
- 3. Let Ω and Δ be two sets of equal cardinality. Show that $\operatorname{Sym}(\Omega) \cong \operatorname{Sym}(\Delta)$.
- 4. Let the lengths of cycles of g be d_1, d_2, \ldots, d_k . What is the order of g? (Recall that the order of a group element g is the smallest positive integer m such that $g^m = id$).
- 5. If $g, h \in \text{Sym}(\Omega)$, then we call the product $g^{-1}hg$ a *conjugate* of h (by g) and write it as h^g . Compute h^g for h = (1, 2, 3)(4, 5)(6, 7) and
 - g = (0, 1, 2, 3, 4, 5, 6, 7),
 - g = (1, 2),
 - g = (1, 2)(4, 5).

What is the general pattern for computing conjugates?

- 6. Let $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ and $g = (\omega_1, \omega_2, \dots, \omega_n)$ a cyclic permutation on Ω . Determine the centraliser and the normaliser of the cyclic group $\langle g \rangle$ generated by g.
- 7. Show that two permutations $g, h \in \text{Sym}(\Omega)$ are conjugate in $\text{Sym}(\Omega)$ whenever they have the same number of cycles of length k for every possible cycle length k.
- 8. Determine the order of PSL(2, q). To which well known groups are PSL(2, 2), PSL(2, 3), PSL(2, 4) and PSL(2, 5) isomorphic to? Find the corresponding isomorphisms.