1 Permutation groups and group actions

1.1 What is a permutation and how does one present it

- Definition of a permutation: A permutation of a set Ω is a bijective mapping from Ω onto itself.
- Tabular form of a permutation: We may write a permutation in tabular form. For example:

$$
g=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 5 & 4 & 1 & 2
\end{array}\right),
$$

meaning 1 maps to 3,2 to 6,3 to 5 , etc.

- Cyclic form of a permutation: But usually we write a permutation as a product of disjoint cycles or in a cyclic form. For example:

$$
g=(1,3,5)(2,6)(4)=(5,1,3)(2,6)(4)=(3,5,1)(6,2)(4)=\ldots
$$

where g is as abve.

- Cycles of a permutation: The sequences $(1,3,5),(2,6)$ and (4) of the above g are called the cycles of the permutation g. The above g thus consists of one cycle of length 3 , one cycle of length 2 and one cycle of length 1 .
- Cyclic permutation: A permutation that has only one cycle of length larger than 1 is called a cyclic permutation (or also a cycle).
- Omitting cycles of length 1: When presenting a permutation, we sometimes omit cycles of length 1 . We could thus write the above g also as

$$
g=(1,3,5)(2,6) .
$$

- The set of all permutations: The set of all permutations of Ω is denoted by $\operatorname{Sym}(\Omega)$.
- Exponential notation: Henceforth, if $\omega \in \Omega$ and $g \in \operatorname{Sym}(\Omega)$, then we write the image of ω under g as ω^{g}, rather than $g(\omega)$.

1.2 Multiplying permutions and the symmetric group

- Composition of permutations: Since permutations on Ω are function from Ω to Ω, we have a naturally defined operation of the usual composition of functions.
- Example of composition: If $\Omega=\{1,2,3,4,5\}, g=(1,3,4)(2,5)$ and $h=(2,4,5)$, then

$$
g \circ h=(1,3,4,2) \quad \text { and } \quad h \circ g=(1,3,5,4) .
$$

- Left symmetric group: The operation \circ turns the set $\operatorname{Sym}(\Omega)$ into a group, which will be denoted $\operatorname{Sym}_{L}(\Omega)$.
- Inverse composition: But we shall rather work with the operation of inverse composition defined as:

$$
\cdot: \operatorname{Sym}(\Omega) \times \operatorname{Sym}(\Omega) \rightarrow \Omega, \quad \cdot:(g, h) \mapsto h \circ g
$$

- Composition vs. inverse composition: Note that

$$
g \circ h=h \cdot g
$$

and that

$$
\omega^{(g \cdot h)}=\left(\omega^{g}\right)^{h} \quad \text { while } \quad \omega^{(g \circ h)}=\left(\omega^{h}\right)^{g} .
$$

for every $\omega \in \Omega$ and $g, h \in \operatorname{Sym}(\Omega)$.

- The right symmetric group: The operation of inverse composition also turns the set $\operatorname{Sym}(\Omega)$ into a group, which we will denote $\operatorname{Sym}_{R}(\Omega)$.
- Our heart is on the right: Henceforth, we shall always work with $\operatorname{Sym}_{R}(\Omega)$. We will often omit the symbols R, call the inverse composition the product of permutations. As usual in group theory, we shall also omit the symbol \cdot and write $g h$ instead of $g \cdot h$.
- Transpositions and what they generate: A permutation of the form (α, β) is called a transposition. Each permutation can be written as a product of transpositions. In other words, the set of all transpositions on Ω generates $\operatorname{Sym}(\Omega)$
- Even and odd permutations: If g can be written as a product of an odd number of transposition, then it cannot we written as a product of even number of transpositions and vice versa. This allows as to define the notion of odd permutation and even permutation. The set of all even permutations of Ω forms a subgroup of $\operatorname{Sym}(\Omega)$, which will be denoted by $\operatorname{Alt}(\Omega)$.

1.3 Examples of permutation groups

We shall use the symbol $[n]$ to denote the set of positive integers not exceeding n.

- Alternating groups: $\operatorname{Alt}(\Omega)=$ "the set of all even permutations on Ω ";
- Cyclic groups: $\operatorname{Cyc}(n)=\langle(1,2, \ldots, n)\rangle$ with $\Omega=[n]$;
- Dihedral groups: $\operatorname{Dih}(n)=\langle(1,2, \ldots, n),(1)(2, n-1)(3, n-2) \cdots\rangle$ with $\Omega=[n]$
- Groups of affine transformations of a ring: For a commutative ring R with identity, let $\operatorname{Aff}(R)=\left\{x \mapsto a x+b: a \in R^{*}, b \in R\right\}$; then this is a permutation group on the set R. Note that $|\operatorname{Aff}(R)=|R|| R^{*} \mid$. For example: $\operatorname{Aff}\left(\mathbb{Z}_{3}\right)=\operatorname{Sym}\left(\mathbb{Z}_{3}\right)$.
- The projective special group $\operatorname{PSL}(2, q)$: Let \mathbb{F} be a field of prime power order q and let PGL $(2, q)=\left\{x \mapsto \frac{a x+b}{c x+d}: a, c \in \mathbb{F}^{*}, b, d \in R, a d-\right.$ $b c n o t=0\}$ as a permutation group on $\mathbb{F} \cup\{\infty\}$. Here we interpret $\frac{a \infty+b}{c \infty+d}$ as $a c^{-1}$ and $\frac{k}{0}$ for $k \neq 0$ as ∞.
- The subgroup of $\operatorname{PGL}(2, q)$ consisting of functions satisfying $a d-b c=$ 1 , is denoted $\operatorname{PSL}(2, q)$.

1.4 Exercises

Exercise.

1. Find the cyclic form of the permutation $g: \Omega \rightarrow \Omega$ given by:
(a) $\Omega=\{1,2,3,4,5,6,7,8\}$ and

$$
g=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 2 & 7 & 4 & 8 & 5 & 1 & 6
\end{array}\right)
$$

(b) $\Omega=\mathbb{Z}_{7}$, the ring of remainders after division by 7 , and $g(x)=2 x+$ 1. (Which "linear functions" $h: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}, h_{a, b}(x)=a x+b$, are permutions, how many cycles do they have and what are the lengths?)
2. Show that $\operatorname{Sym}_{L}(\Omega)$ and $\operatorname{Sym}_{R}(\Omega)$ are isomorphic.
3. Let Ω and Δ be two sets of equal cardinality. Show that $\operatorname{Sym}(\Omega) \cong \operatorname{Sym}(\Delta)$.
4. Let the lengths of cycles of g be $d_{1}, d_{2}, \ldots, d_{k}$. What is the order of g ? (Recall that the order of a group element g is the smallest positive integer m such that $\left.g^{m}=\mathrm{id}\right)$.
5. If $g, h \in \operatorname{Sym}(\Omega)$, then we call the product $g^{-1} h g$ a conjugate of h (by g) and write it as h^{g}. Compute h^{g} for $h=(1,2,3)(4,5)(6,7)$ and

- $g=(0,1,2,3,4,5,6,7)$,
- $g=(1,2)$,
- $g=(1,2)(4,5)$.

What is the general pattern for computing conjugates?
6. Let $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$ and $g=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$ a cyclic permutation on Ω. Determine the centraliser and the normaliser of the cyclic group $\langle g\rangle$ generated by g.
7. Show that two permutations $g, h \in \operatorname{Sym}(\Omega)$ are conjugate in $\operatorname{Sym}(\Omega)$ whenever they have the same number of cycles of length k for every possible cycle length k.
8. Determine the order of $\operatorname{PSL}(2, q)$. To which well known groups are $\operatorname{PSL}(2,2)$, $\operatorname{PSL}(2,3), \operatorname{PSL}(2,4)$ and $\operatorname{PSL}(2,5)$ isomorphic to? Find the corresponding isomorphisms.

