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1.5 Group actions

• Group action: Let G be a group, let Ω be a set, and let ρ : G →
Sym(Ω) be a homomorphism of groups. Then ρ is called a group
action of G upon Ω.

• Shorthand notation: We can avoid explicitly stating the “name” ρ
of the action by writing G ; Ω instead of ρ, ωg instead of ωρ(g), and
gΩ instead of the permutation ρ(g). This is particularly useful when it
is clear from the context which action of G upon Ω we have in mind.

• The induced permutation group: The image ρ(G) of ρ is a permutation
group on Ω. We shall refer to this group as the permutation group
induced by the action ρ. Its shorthand notation is GΩ.

• The kernel: The kernel of the action ρ is denoted by Ker(ρ) (or
Ker(G ; Ω)) if we want to avoid naming ρ). It consists of all those
elements g ∈ G that induce a trivial permutation of Ω. Note that
GΩ ∼= G/Ker(G; Ω).

• Faithfulness: If Ker(ρ) = 1, then we say that the action is faithful .
In this case ρ is an embedding of G into Sym(Ω), and thus G ∼= GΩ.
After identifying each g with ρ(g), we may view G as a permutation
group on Ω.

• Induced action of subgroups: If H ≤ G and ρ : G→ Sym(Ω) is an
action, then the restriction ρ |H : H → Sym(Ω) is also an action, which
is called the induced action of a subrgoup. In this sense, whenever G
acts on a set Ω, so does each of its subgroups.

• Permutation groups as actions: Conversely, if G ≤ Sym(Ω) is a
permutation group, then the identity mapping ι : G → Sym(Ω) is a
faithful action of G upon Ω. In this sense we may identify notions of
faithful group actions and permutation groups.

Remark. Let Ω be a finite nonempty set, let G be a group and let

· : Ω×G→ Ω, · : (a, g) 7→ a · g

be a mapping that, for all a ∈ Ω and g, h ∈ G, satisfies the following axioms:

A1. a1 = a;

A2. a(gh) = (ag)h.
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For each g ∈ G, let ρ(g) be a mapping from Ω to Ω, which maps a ∈ Ω to a · g ∈ Ω.
Then ρ(g) ∈ Sym(Ω), and the mapping

ρ : G→ Sym(Ω), ρ : g 7→ ρ(g)

is a group action of G upon Ω.

Conversely: If ρ : G → Sym(Ω) is a group action, then the mapping (a, g) 7→
aρ(g) satisfies axioms A1 in A2.

1.6 Stabilisers and orbits of group actions

Throughout this section, let G act upon Ω, let ω ∈ Ω, and let ∆ ⊆ Ω.

• Stabiliser: The set

Gω = {g ∈ G : ωg = ω}

is called the stabiliser of ω. Similarly:

G∆ = {g ∈ G : ∆g = ∆},

where ∆g = {δg : δ ∈ ∆}, s the set-wise stabiliser of ∆. On the other
hand,

G(∆) = {g ∈ G : δg = δ for each δ ∈ ∆} =
⋂
δ∈∆

Gδ,

is called the point-wise stabiliser of ∆.

• Induced action of the set-wise stabiliser: There is an obvious
action of G∆ upon ∆. The permutation group, induced by this action,
is denoted G∆

∆. The kernel of this action is G(∆), implying that G(∆) C
G∆ and G∆

∆
∼= G∆/G(∆).

Example. Let Ω = {1, 2, . . . , n}, let ∆ = {1, 2, . . . ,m} for 1 < m < n
and let G = Sym(Ω). Then G(∆)

∼= Sym(Ω \ ∆), G∆
∼= Sym(∆) ×

Sym(Ω \∆), and G∆
∆
∼= Sym(∆).

• Orbit: The set
ωG = {ωg : g ∈ G}

is called the orbit of ω.

• Transitivity: If ωG = Ω, then the action is transitive;
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• Semiregularity: If |Gω| = 1 for every ω ∈ Ω, then the action is
semiregular ;

• Regularity: The action if regular if it is transitive and semiregular.

• Conjugating the stabiliser: For any g ∈ G we have:

G(ωg) = (Gω)g.

• Orbit space: If we write ω ∼ δ whenever δ ∈ ωG, it can be proved
that ∼ is an equivalence relation on Ω whose equivalence classes are
precisely the orbits of the action. The set of all orbits

Ω/G = {ωG : ω ∈ Ω}

is called the orbit space of the action of G on Ω, and thus constitutes
a partition of Ω.

• Orbit-stabiliser formula: For any ω ∈ Ω we have

|Gω| |ωG| = |G|.

• Frattini argument: Suppose that G, which acts on Ω, contains a
subgroup H which acts transitively on Ω. Then for any ω ∈ Ω: G =
HGω = GωH. If H happens to acts regularly on Ω, then each g ∈ G
factorises uniquely into a product hg′ for h ∈ H and g′ ∈ Gω.

Exercise.

• Let G act upon Ω, |Ω| = n, and let ∆ ⊆ Ω, |∆| = k. Show that |G : G(∆)| ≤
n(n− 1) . . . (n− k + 1).

• Let G act upon a set Ω, let p be a prime divisor of |G|, let P be a Sylow
p-subgroup of G, and suppose that |Ω| = pkm for some integer m coprime to
p. Show that every shortest orbit of P has length at least pk. (Note that this
implies that whenever G is transitive and |Ω| = pk, then P is also transitive.)
Show that, in fact, there is an orbit of P of length precisely pk.

• Use the Frattini argument to show the following classical result in group
theory: Let H C G and let P be a Sylow p-subgroup of H. Then G =
NG(P )H. (Hint: Consider the action of G on the set of Sylow p-subgroup of
H by conjugation.)
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1.7 A few examples of actions arising from group theory

• Action by right multiplication: Let G act upon the set G by the
rule hg = hg. This action is regular.

• Action by left multiplication: Let G act upon the set G by the rule
hg = g−1h. This action is also regular. (Note that if g−1 is replaced
by g, then this is no longer an action. What goes wrong?)

• Action by conjugation: Let G act upon itself by the rule hg =
g−1hg. This action is called the action by conjugation. It is never
transitive (unless G = 1) since {1} is always an orbit. The orbits of
this action are called conjugacy classes of G. Is this action always
faithful? What is the kernel of this action? What is the stabiliser of
an element h ∈ G?

• Action by conjugation on subgroups: Each group G acts upon
the set of its subgroups by conjugation: Hg = g−1Hg for every H ≤ G
and g ∈ G. Is this action ever transitive? Is it ever faithful? What is
the stabiliser of a group H?

• Action on the set of Sylow subgroups: Let p be a prime divisor
of the order of a group G and let Sylp(G) be the set of all Sylow p-
subgroups of G. Then G acts upon Sylp(G) by conjugation: P g =
g−1Pg for every P ∈ Sylp(G). By the Sylow’s theorems, we know that
this action is transitive.

• Action on cosets: Let H ≤ G and let G/H = {Hg : g ∈ G} be the
corresponding cosets space (that is, the set of right cosets of H in G).
Then G acts upon G/H in the following way:

(Hx)g = Hxg for any Hx ∈ G/H and g ∈ G.
This action is called the action of a group on the cosets of a subgroup.
It is easy to check that this action is transitive, that the stabiliser of
the element H ∈ G/H is H (as a subgroup of G) and that the kernel
of this action is ∩g∈GHg. The latter groups is also called the core of
H in G and denoted by coreG(H).

Exercise.

• Suppose that G contains a subgroup H of index n. Show that H contains
a subgroup K, which is normal in G and has index at most n! in G. (Note
that this shows that every subgroup of index 2 is normal.)



Transitive constituents 9

1.8 Transitive constituents

Let ρ : G→ Sym(Ω) be a group action and let ∆ be an orbit of this action.
Then one can define the action

ρ∆ : G→ Sym(∆), ωρ∆(g) = ωρ(g) for each ω ∈ ∆, g ∈ G.

This action is clearly a transitive. The induced permution group G∆ =
Im(ρ∆) ≤ Sym(∆) is then called a transitive constituent of the action ρ.

Since the homomorphism π∆ : G→ G∆ is not necessarily an isomorphism,
G∆ does not carry all the information about G. What is more, two actions
might have the same transitive constituents, but can be still very different:

Example. The permutation groups

G = 〈(0, 1, 2), (3, 4, 5)〉, H = 〈(0, 1, 2)(3, 4, 5)〉.

have the same transitive constituents, but are not isomorphic.

However, the following still holds: Let ∆1,∆2, . . . ,∆r be the orbits of a
permutation group G. Then there exists a group monomorphism

ι : G ↪→ G∆1 ×G∆2 × . . .×G∆r ,

for which the projection of the group ι(G) to each of the component G∆i is
surjective.

Remark. In other words, G is a subdirect product of its transitive constituents.


