1.5 Group actions

- Group action: Let G be a group, let Ω be a set, and let $\rho: G \to \text{Sym}(\Omega)$ be a homomorphism of groups. Then ρ is called a group action of G upon Ω .
- Shorthand notation: We can avoid explicitly stating the "name" ρ of the action by writing $G \rightsquigarrow \Omega$ instead of ρ , ω^g instead of $\omega^{\rho(g)}$, and g^{Ω} instead of the permutation $\rho(g)$. This is particularly useful when it is clear from the context which action of G upon Ω we have in mind.
- The induced permutation group: The image $\rho(G)$ of ρ is a permutation group on Ω . We shall refer to this group as the permutation group induced by the action ρ . Its shorthand notation is G^{Ω} .
- The kernel: The kernel of the action ρ is denoted by $\operatorname{Ker}(\rho)$ (or $\operatorname{Ker}(G \rightsquigarrow \Omega)$) if we want to avoid naming ρ). It consists of all those elements $g \in G$ that induce a trivial permutation of Ω . Note that $G^{\Omega} \cong G/\operatorname{Ker}(G \rightsquigarrow \Omega)$.
- Faithfulness: If $\operatorname{Ker}(\rho) = 1$, then we say that the action is *faithful*. In this case ρ is an embedding of G into $\operatorname{Sym}(\Omega)$, and thus $G \cong G^{\Omega}$. After identifying each g with $\rho(g)$, we may view G as a permutation group on Ω .
- Induced action of subgroups: If $H \leq G$ and $\rho: G \to \text{Sym}(\Omega)$ is an action, then the restriction $\rho \mid_H : H \to \text{Sym}(\Omega)$ is also an action, which is called the *induced action of a subgroup*. In this sense, whenever G acts on a set Ω , so does each of its subgroups.
- **Permutation groups as actions**: Conversely, if $G \leq \text{Sym}(\Omega)$ is a permutation group, then the identity mapping $\iota: G \to \text{Sym}(\Omega)$ is a faithful action of G upon Ω . In this sense we may identify notions of *faithful group actions* and *permutation groups*.

REMARK. Let Ω be a finite nonempty set, let G be a group and let

$$\cdot: \Omega \times G \to \Omega, \quad \cdot: (a,g) \mapsto a \cdot g$$

be a mapping that, for all $a \in \Omega$ and $g, h \in G$, satisfies the following axioms:

A1.
$$a^1 = a;$$

A2. $a^{(gh)} = (a^g)^h.$

For each $g \in G$, let $\rho(g)$ be a mapping from Ω to Ω , which maps $a \in \Omega$ to $a \cdot g \in \Omega$. Then $\rho(g) \in \text{Sym}(\Omega)$, and the mapping

$$\rho \colon G \to \operatorname{Sym}(\Omega), \qquad \rho \colon g \mapsto \rho(g)$$

is a group action of G upon Ω .

Conversely: If $\rho: G \to \text{Sym}(\Omega)$ is a group action, then the mapping $(a,g) \mapsto a^{\rho(g)}$ satisfies axioms A1 in A2.

1.6 Stabilisers and orbits of group actions

Throughout this section, let G act upon Ω , let $\omega \in \Omega$, and let $\Delta \subseteq \Omega$.

• Stabiliser: The set

$$G_{\omega} = \{g \in G : \omega^g = \omega\}$$

is called the *stabiliser* of ω . Similarly:

$$G_{\Delta} = \{ g \in G : \Delta^g = \Delta \},\$$

where $\Delta^g = \{\delta^g : \delta \in \Delta\}$, s the *set-wise stabiliser* of Δ . On the other hand,

$$G_{(\Delta)} = \{ g \in G : \delta^g = \delta \text{ for each } \delta \in \Delta \} = \bigcap_{\delta \in \Delta} G_{\delta},$$

is called the *point-wise stabiliser* of Δ .

• Induced action of the set-wise stabiliser: There is an obvious action of G_{Δ} upon Δ . The permutation group, induced by this action, is denoted G_{Δ}^{Δ} . The kernel of this action is $G_{(\Delta)}$, implying that $G_{(\Delta)} \triangleleft G_{\Delta}$ and $G_{\Delta}^{\Delta} \cong G_{\Delta}/G_{(\Delta)}$.

EXAMPLE. Let $\Omega = \{1, 2, ..., n\}$, let $\Delta = \{1, 2, ..., m\}$ for 1 < m < nand let $G = \operatorname{Sym}(\Omega)$. Then $G_{(\Delta)} \cong \operatorname{Sym}(\Omega \setminus \Delta)$, $G_{\Delta} \cong \operatorname{Sym}(\Delta) \times \operatorname{Sym}(\Omega \setminus \Delta)$, and $G_{\Delta}^{\Delta} \cong \operatorname{Sym}(\Delta)$.

 \bullet Orbit: The set

$$\omega^G = \{\omega^g : g \in G\}$$

is called the *orbit* of ω .

• Transitivity: If $\omega^G = \Omega$, then the action is *transitive*;

- Semiregularity: If $|G_{\omega}| = 1$ for every $\omega \in \Omega$, then the action is *semiregular*;
- **Regularity**: The action if *regular* if it is transitive and semiregular.
- Conjugating the stabiliser: For any $g \in G$ we have:

$$G_{(\omega^g)} = (G_\omega)^g.$$

• Orbit space: If we write $\omega \sim \delta$ whenever $\delta \in \omega^G$, it can be proved that \sim is an equivalence relation on Ω whose equivalence classes are precisely the orbits of the action. The set of all orbits

$$\Omega/G = \{\omega^G : \omega \in \Omega\}$$

is called the *orbit space* of the action of G on Ω , and thus constitutes a partition of Ω .

• Orbit-stabiliser formula: For any $\omega \in \Omega$ we have

$$|G_{\omega}| |\omega^G| = |G|.$$

• Frattini argument: Suppose that G, which acts on Ω , contains a subgroup H which acts transitively on Ω . Then for any $\omega \in \Omega$: $G = HG_{\omega} = G_{\omega}H$. If H happens to acts regularly on Ω , then each $g \in G$ factorises uniquely into a product hg' for $h \in H$ and $g' \in G_{\omega}$.

EXERCISE.

- Let G act upon Ω , $|\Omega| = n$, and let $\Delta \subseteq \Omega$, $|\Delta| = k$. Show that $|G: G_{(\Delta)}| \le n(n-1)\dots(n-k+1)$.
- Let G act upon a set Ω , let p be a prime divisor of |G|, let P be a Sylow p-subgroup of G, and suppose that $|\Omega| = p^k m$ for some integer m coprime to p. Show that every shortest orbit of P has length at least p^k . (Note that this implies that whenever G is transitive and $|\Omega| = p^k$, then P is also transitive.) Show that, in fact, there is an orbit of P of length precisely p^k .
- Use the Frattini argument to show the following classical result in group theory: Let $H \lhd G$ and let P be a Sylow *p*-subgroup of H. Then $G = N_G(P)H$. (Hint: Consider the action of G on the set of Sylow *p*-subgroup of H by conjugation.)

1.7 A few examples of actions arising from group theory

- Action by right multiplication: Let G act upon the set G by the rule $h^g = hg$. This action is regular.
- Action by left multiplication: Let G act upon the set G by the rule $h^g = g^{-1}h$. This action is also regular. (Note that if g^{-1} is replaced by g, then this is no longer an action. What goes wrong?)
- Action by conjugation: Let G act upon itself by the rule $h^g = g^{-1}hg$. This action is called the *action by conjugation*. It is never transitive (unless G = 1) since $\{1\}$ is always an orbit. The orbits of this action are called *conjugacy classes* of G. Is this action always faithful? What is the kernel of this action? What is the stabiliser of an element $h \in G$?
- Action by conjugation on subgroups: Each group G acts upon the set of its subgroups by conjugation: $H^g = g^{-1}Hg$ for every $H \leq G$ and $g \in G$. Is this action ever transitive? Is it ever faithful? What is the stabiliser of a group H?
- Action on the set of Sylow subgroups: Let p be a prime divisor of the order of a group G and let $\operatorname{Syl}_p(G)$ be the set of all Sylow psubgroups of G. Then G acts upon $\operatorname{Syl}_p(G)$ by conjugation: $P^g = g^{-1}Pg$ for every $P \in \operatorname{Syl}_p(G)$. By the Sylow's theorems, we know that this action is transitive.
- Action on cosets: Let $H \leq G$ and let $G/H = \{Hg : g \in G\}$ be the corresponding *cosets space* (that is, the set of *right cosets* of H in G). Then G acts upon G/H in the following way:

 $(Hx)^g = Hxg$ for any $Hx \in G/H$ and $g \in G$.

This action is called the *action of a group on the cosets of a subgroup*. It is easy to check that this action is transitive, that the stabiliser of the element $H \in G/H$ is H (as a subgroup of G) and that the kernel of this action is $\bigcap_{g \in G} H^g$. The latter groups is also called the *core* of H in G and denoted by $\operatorname{core}_G(H)$.

EXERCISE.

• Suppose that G contains a subgroup H of index n. Show that H contains a subgroup K, which is normal in G and has index at most n! in G. (Note that this shows that every subgroup of index 2 is normal.)

8

1.8 Transitive constituents

Let $\rho: G \to \text{Sym}(\Omega)$ be a group action and let Δ be an orbit of this action. Then one can define the action

$$\rho_{\Delta} \colon G \to \operatorname{Sym}(\Delta), \quad \omega^{\rho_{\Delta}(g)} = \omega^{\rho(g)} \text{ for each } \omega \in \Delta, g \in G.$$

This action is clearly a transitive. The induced permution group $G^{\Delta} = \operatorname{Im}(\rho_{\Delta}) \leq \operatorname{Sym}(\Delta)$ is then called a *transitive constituent* of the action ρ .

Since the homomorphism $\pi_{\Delta} \colon G \to G^{\Delta}$ is not necessarily an isomorphism, G^{Δ} does not carry all the information about G. What is more, two actions might have the same transitive constituents, but can be still very different:

EXAMPLE. The permutation groups

$$G = \langle (0, 1, 2), (3, 4, 5) \rangle, \quad H = \langle (0, 1, 2)(3, 4, 5) \rangle.$$

have the same transitive constituents, but are not isomorphic.

However, the following still holds: Let $\Delta_1, \Delta_2, \ldots, \Delta_r$ be the orbits of a permutation group G. Then there exists a group monomorphism

$$\iota: G \hookrightarrow G^{\Delta_1} \times G^{\Delta_2} \times \ldots \times G^{\Delta_r},$$

for which the projection of the group $\iota(G)$ to each of the component G^{Δ_i} is surjective.

REMARK. In other words, G is a *subdirect product* of its transitive constituents.