STRUCTURE OF 2-TRANSITIVE GROUPS

5 Structure of 2-transitive groups

THEOREM 5.1 (Burnside) Let G be a 2-transitive permutation group on a
set ). Then G possesses a unique minimal normal subgroup N and one of
the two options occurs:

1. N is regular, elementary abelian, and G is permutation isomorphic to
a subgroup of an affine group AGL(d, Zy) acting naturally on Zg with
G, being a subgroup of GL(d,Z,) acting transitively on the non-zero
vectors in ZZ.

2. N is a non-abelian simple group acting primitively on ().

PROOF. Let N be a minimal normal subgroup of G. Since N is a
non-trivial normal subgroup of a primitive group, it is transitive. If N is
not the unique minimal normal subgroup of G, then, by Theorem 4.6, the
only other minimal normal subgroup is the centraliser C(N), and both
N and Cg(N) are regular non-abelian normal subgroups of G. However,
a regular normal subgroup of a 2-transitive group is elementary abelian, a
contradiction. This shows that N is the unique minimal normal subgroup
of G.

If N is regular, then, as above, it is elementary abelian and (1) holds.
Suppose thus that IV is not regular.

Suppose first that N is imprimitive and let B be a minimal non-trivial
block of imprimitivity for N. Let B = {BY : g € G}. Since N is normal in
G, each element of B is a minimal block of imprimitivity for N. (Why?!)
Since an intersection of two blocks is again a block, it follows that any two
elements of B intersect in at most one element.

Since B is not trivial, there exists two elements w,d € B. Now take any
W', 8 € Q. Since G is 2-transitive, there exist g € G such that w9 = &’ and
09 = ¢, and thus ', 8 € BY. Together with what we proved above, this
shows that for any two elements of w,§ € €2, there exists a unique block in
B containing them; we shall denote this block by [wd].

We will now show that N,s = 1 for any two w,d € ). Since each element
of B is a block of imprimitivity for NNV, it follows that N, fixes (set-wise)
every block through w. Now let g € N, and let v be an element of €2 not
contained in [wd]. Then N4 fixes set-wise [wy] as well as [§7], thus fixing
their intersection, which is v. In particular, N, < N, for any v € Q\ [wd].
But then (by switching the roles of v and 0), it follows that N, (and thus
also N,s) fixes every point not contained in [w7], and therefore every point
on [wé]. In particular, N5 = 1, as claimed.
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We have thus shown that N is a Frobenius group. We could now use the
Frobenuis theorem to show that N contains a characteristic regular normal
subgroup R, consisting of the identity and all fixed-point-free elements of
N. Such a group would then be normal in G, and by minimality of IV, we
would have N = R, implying that NV is regular itself, which contradicts out
assumptions. Alternatively, to avoid appealing to the proof of the Frobenius
theorem, we could continue in a more elementary way, which can be outlined
as follows (you will be required to fill in details as a part of 2nd Assignment):

Let R* be the set of all fixed-point-free elements of N and let R =
R* U {1}. Prove that |R| = n, where n = [Q2|. Use this to argue that for
any two «, 3 € 2 there is a unique g € R* mapping a to 5. Now use 2-
transitivity of G to conclude that all elements in R* are conjugate within
G. Now let p be a prime dividing n, and P a Sylow p-subgroup of N. Then
P contains a fixed-point-free element of order p. So all elements in R* have
order p, and n is a power of p. Then it follows that P is transitive (why?),
and so consists of the identity and all the elements in R*; in particular,
P = R, and thus R is a regular normal subgroup of G. Since R is regular
and G primitive, R is minimal, and thus N = R, a contradiction.

Either way, we proved that whenever NN is imprimitive, it is regular, and
thus part (1) holds. Suppose now that N is primitive but not regular. Being
a minimal normal subgroup of G, N =T} x ... x T}, where T; are minimal
normal subgroups of 7', all isomorphic to some fixed normal non-abelian
(why non-abelian?!) simple group 7. On the other hand, N is primitive
so either contains a unique minimal normal subgroup (and thus & = 1) or
it contains two distinct mutually centralising minimal normal subgroups—
both regular (here k = 2).

We are thus left with the case where the unique minimal normal subgroup
N is adirect product T'x S, where T and S are isomorphic, both regular, they
centralise each other and are non-abelian simple. Moreover, and element of
G either normalises both S and T or conjugates one to the other. Let G be
the normaliser of N in Sym(Q). Then G < G and hence G is 2-transitive.
By definition, NN is normal in G, and since N is minimal normal in G, so it
is in G. By what we showed, N is the unique minimal normal subgroup of
G. Now let H be the normaliser of T' in G; note that H is the kernel of the
action of G on {T,S} by conjugation and thus |G : H| = 2; also N < H.
Hence T is a regular normal subgroup in a primitive group H, hence, without
loss of generality, = T and H>TxH 1, in its natural action on 7". Now
recall that S is the centraliser of 7" in Sym(§2) = Sym(7’). But the group L
of permutations A\y: t +— g~ t, g € T', also centralises 1" and acts regularly on
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T. Hence S = L, and thus N = L x T'. But the permutation ¢ € Sym(7T),
g — g1, conjugates S to L and vice versa, and thus belongs to G \ H. In
particular, G = <ﬁ, t). Also, since ¢ fixes 1 € T, it follows that G = <ﬁ1, L).
Now, both ¢ and elements of H; preserve the order of elements in 7' (the
latter being acting as conjugations), implying that G1 preserves the orders
of elements in 7. But G (being 2-transitive) acts transitively in 7"\ {1},
implying that T' is an elementary abelian p groups, a contradiction.
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6 Permutation groups of prime degree

THEOREM 6.1 (Burnside) Let G be a transitive permutation group on a set
Q) of prime size p. Then either G is doubly transitive or G is permutation
isomorphic to a group G satisfying Z, < G < AGL(1,Z,).

Throughout this section, let F = Z,, the field of order p, and let F¢
denote the set of all functions from Q to F. If we endow F*? with the point-
wise addition and multiplication with scalars from F, it becomes an F-vector
space. For w € Q, let x,, € F be the characteristic function of w. Then
{Xw : w € Q} is clearly a basis for F.

Now let G act upon F** according to the rule:

FI(w) = f(w9 ), forall feF? ge G andwe Q.

Observe that for each g € G, the mapping T : F® — F92, Ty: f— f91isin
fact an invertible linear transformation of the F-vector space F:. Moreover,
the mapping G' — GL(F), g — T, is an injective group homomorphism.
In particular, by identifying g with T, we may view G as a subgroup of
GL(F?). (CHECK ALL THIS!)

Further, let Hom(F}, F?) (denoted in short by Hom) be the F-linear
space of all linear transformations of F?, and let Homg(F?, F®) (denoted in
short by Homg ) be the set of all those ¢ € Hom that commute with every
g € G. That is, ¢ € Homg if and only if o(f)9 = ¢(f9) for every g € G and
f € F®. (CHECK THAT THIS IS INDEED A SUBSPACE OF Hom.)

Note (CHECK!) that for g € G and w € 2, we have

(Xw)g = Xwy

and deduce that, for a fixed w € , the mapping ®: Homg — F, &: ¢ —
©(Xw) is injective and F-linear. In particular, the dimension of Hom¢ (as
an F-vector space) equals the dimension of the subspace ®(Homg) of F.

Now prove that f € ®(Homg) if and only if f is constant on each G-
orbit on €). Use this do deduce the following lemma:

LEMMA 6.2 Let w € Q.Then dimp Hom¢ equals the number of orbits of G,
on €.

We will also need the following lemma:

LEMMA 6.3 Let F be a finite field of order p. Then, for every function
f:F — F there exists a unique polynomial w¢ € Flx] of degree at most p—1
such that 7y and f coincide as functions on F.
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Let us now prove Burnside’s theorem. The theorem clearly holds for
p = 2 and 3 (A WORD OF EXPLANATION). So we shall assume that
p > 9.

Let g be an element of order p in G and let P = (p) (PROVE THAT
P is in fact the Sylow p-subgroup of G). Since we want to determine the
group G only up to permutation isomorphism, we may assume that = F
and p: @« - a — 1 for every a € F.

In view of Lemma 6.3, we may identify F¥ by the F-vector space F,_1[z]
of polynomials of degree at most p — 1. In view of this identification, we
may thus view p as the polynomial x — 1.

Recall that G can be viewed as a group of linear transformations of
the vector space F (= F¥ = F,_1[z]). It thus makes sense to ask which
subspaces of F? are G-invariant (preserved by G). In fact, in order to prove
the theorem, we need to show that the subspace of linear transformations
F1[z] is G-invariant. Indeed, if this is the case, then for an arbitrary g € G,
the the g~!-image of the polynomial 7(x) = z is an element of Fy[x], and
thus there exist ¢,d € F such that 79 (z) = cx + d. If we evaluate this
polynomial equality at an arbitrary o € F, we see that 7Tg_1(04) = ca +d.
On the other hand, the left-hand side of the quality equals 7w(a9) = a9.
We have thus shown that for every g € G, there exist ¢,d € F such that
g: a+— ca+d for every a € F. Since g is a permutation of F, we see that
¢ # 0, and the result follows.

The rest of the proof is thus devoted to the proof that the subspace Fy[z]
of Fp_1[x] is G-invariant.

For r € {0,1,...,p— 1}, let M, = F,[z]. Let us first prove that the only
non-trivial P-invariant subspaces of Fp,l[:n] are M, for 0 <r <p-—1. To
this end, introduce the F-linear transformation

AN Fpqz] = Fpalz], & f=fP—f;

that is, (Af)(z) = f(x + 1) — f(z). Now observe that, if f is of degree r,
then Af is of degree (exactly) » — 1 (here the zero polynomial is treated
as the polynomial of degree —1). This implies (PROVIDE DETAILS) that
every non-trivial A-invariant subspace of Fj,_1[z] is one of M,., 0 <r < p—1.

Now observe that p (as a linear transformation of F,_;[z]) commutes
with A and that every P-invariant subspace is also A-invariant (indeed,
since A = p —id), implying that the P-invariant subspaces of M,_; are
precisely M,, as claimed.

Now observe that M_; = (0), My (constants) and M,_; are also G-
invariant. Moreover, {f € Fp_1[z] : > cp f(a) = 0} is also a G-invariant

29



30

PERMUTATION GROUPS OF PRIME DEGREE

subspace of codimension 1 (and must thus equal M),_»).

Suppose now that for some r, 0 < r < p — 3, both M, and M, ; are
G-invariant. Then M, 1 : M, = {f € Fp_1[z] : fM, < M,11} (here the
multiplication must be understood pointwise, that is, if the polynomials
in fM, that are of degree higher that p — 1 must be first interpreted as
functions and then the corresponding polynomials of degree at most p — 1
must be found) is also G-invariant (CHECK!), and equals M; (CHECK!).
(WHY DOES THIS ARGUMENT FAIL WHEN r = p — 2?7) Hence M is
G-invariant and the result follows.

We shall now assume that G is not double transitive and show that
such an r indeed exists. Take ¢ € Homg and f € F,_;[z], and show that
p(OF) = Do (f).

Now suppose that there exists ¢ € Homg such that Im(p) = M, for
some t € {1,2,...,p—2}. Then let r =t — 1 and observe that p(M,_2) =
O(AMy—1) = Dp(Mp—1) = AMy = M,. Now, since ¢ (as an element of
Hom¢) maps G-invariant subspaces to G-invariant subspaces, both M, and
M, are G-invariant, and the result follows.

To conclude the proof, it thus suffices to show that such a ¢ exists. To
this end, take f € F,_1[z] of degree precisely p — 1 (say f(z) = 2P~ 1).
Then {f, Af,A2f,...,AP7Lf} forms a basis for F,_1[z]. Use this to show
that ¥: Homg — Fp_1[z], ¢ — ¢(f), is injective and F-linear. Now recall
that, since G is doubly transitive, we have dimg Hom¢g > 3. In particular,

Im¥ must contain a polynomial of degree t for some t € {1,...,p — 2}
(WHY?). That is, there exists ¢ € Homg such that ¢(f) has degree ¢t €
{1,...,p— 2}. Since ¢ commutes with A and since F,_;[z] is spanned by

{f,F, A2f, ..., AP7Lf} it follows that Ime is spanned by {¢(f), Ap(f),
N2o(f), ..., AP Lo(f)}, and thus Ime < M;. But on the other hand, Img
is a G-invariant subspace containing a polynomial of degree ¢, implying that
Imy = M,. This proofs the theorem.



