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5 Structure of 2-transitive groups

Theorem 5.1 (Burnside) Let G be a 2-transitive permutation group on a
set Ω. Then G possesses a unique minimal normal subgroup N and one of
the two options occurs:

1. N is regular, elementary abelian, and G is permutation isomorphic to
a subgroup of an affine group AGL(d,Zp) acting naturally on Zdp with
Gω being a subgroup of GL(d,Zp) acting transitively on the non-zero
vectors in Zdp.

2. N is a non-abelian simple group acting primitively on Ω.

Proof. Let N be a minimal normal subgroup of G. Since N is a
non-trivial normal subgroup of a primitive group, it is transitive. If N is
not the unique minimal normal subgroup of G, then, by Theorem 4.6, the
only other minimal normal subgroup is the centraliser CG(N), and both
N and CG(N) are regular non-abelian normal subgroups of G. However,
a regular normal subgroup of a 2-transitive group is elementary abelian, a
contradiction. This shows that N is the unique minimal normal subgroup
of G.

If N is regular, then, as above, it is elementary abelian and (1) holds.
Suppose thus that N is not regular.

Suppose first that N is imprimitive and let B be a minimal non-trivial
block of imprimitivity for N . Let B = {Bg : g ∈ G}. Since N is normal in
G, each element of B is a minimal block of imprimitivity for N . (Why?!)
Since an intersection of two blocks is again a block, it follows that any two
elements of B intersect in at most one element.

Since B is not trivial, there exists two elements ω, δ ∈ B. Now take any
ω′, δ′ ∈ Ω. Since G is 2-transitive, there exist g ∈ G such that ωg = ω′ and
δg = δ′, and thus ω′, δ′ ∈ Bg. Together with what we proved above, this
shows that for any two elements of ω, δ ∈ Ω, there exists a unique block in
B containing them; we shall denote this block by [ωδ].

We will now show that Nωδ = 1 for any two ω, δ ∈ Ω. Since each element
of B is a block of imprimitivity for N , it follows that Nω fixes (set-wise)
every block through ω. Now let g ∈ Nωδ and let γ be an element of Ω not
contained in [ωδ]. Then Nωδ fixes set-wise [ωγ] as well as [δγ], thus fixing
their intersection, which is γ. In particular, Nωδ ≤ Nωγ for any γ ∈ Ω\ [ωδ].
But then (by switching the roles of γ and δ), it follows that Nωγ (and thus
also Nωδ) fixes every point not contained in [ωγ], and therefore every point
on [ωδ]. In particular, Nωδ = 1, as claimed.
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We have thus shown that N is a Frobenius group. We could now use the
Frobenuis theorem to show that N contains a characteristic regular normal
subgroup R, consisting of the identity and all fixed-point-free elements of
N . Such a group would then be normal in G, and by minimality of N , we
would have N = R, implying that N is regular itself, which contradicts out
assumptions. Alternatively, to avoid appealing to the proof of the Frobenius
theorem, we could continue in a more elementary way, which can be outlined
as follows (you will be required to fill in details as a part of 2nd Assignment):

Let R∗ be the set of all fixed-point-free elements of N and let R =
R∗ ∪ {1}. Prove that |R| = n, where n = |Ω|. Use this to argue that for
any two α, β ∈ Ω there is a unique g ∈ R∗ mapping α to β. Now use 2-
transitivity of G to conclude that all elements in R∗ are conjugate within
G. Now let p be a prime dividing n, and P a Sylow p-subgroup of N . Then
P contains a fixed-point-free element of order p. So all elements in R∗ have
order p, and n is a power of p. Then it follows that P is transitive (why?),
and so consists of the identity and all the elements in R∗; in particular,
P = R, and thus R is a regular normal subgroup of G. Since R is regular
and G primitive, R is minimal, and thus N = R, a contradiction.

Either way, we proved that whenever N is imprimitive, it is regular, and
thus part (1) holds. Suppose now that N is primitive but not regular. Being
a minimal normal subgroup of G, N = T1 × . . .× Tk, where Ti are minimal
normal subgroups of T , all isomorphic to some fixed normal non-abelian
(why non-abelian?!) simple group T . On the other hand, N is primitive
so either contains a unique minimal normal subgroup (and thus k = 1) or
it contains two distinct mutually centralising minimal normal subgroups—
both regular (here k = 2).

We are thus left with the case where the unique minimal normal subgroup
N is a direct product T×S, where T and S are isomorphic, both regular, they
centralise each other and are non-abelian simple. Moreover, and element of
G either normalises both S and T or conjugates one to the other. Let G̃ be
the normaliser of N in Sym(Ω). Then G ≤ G̃ and hence G̃ is 2-transitive.
By definition, N is normal in G̃, and since N is minimal normal in G, so it
is in G̃. By what we showed, N is the unique minimal normal subgroup of
G̃. Now let H̃ be the normaliser of T in G̃; note that H̃ is the kernel of the
action of G̃ on {T, S} by conjugation and thus |G̃ : H̃| = 2; also N ≤ H̃.
Hence T is a regular normal subgroup in a primitive group H̃, hence, without
loss of generality, Ω = T and H̃ ∼= T o H̃1, in its natural action on T . Now
recall that S is the centraliser of T in Sym(Ω) = Sym(T ). But the group L
of permutations λg : t 7→ g−t, g ∈ T , also centralises T and acts regularly on
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T . Hence S = L, and thus N = L × T . But the permutation ι ∈ Sym(T ),
g 7→ g−1, conjugates S to L and vice versa, and thus belongs to G̃ \ H̃. In
particular, G̃ = 〈H̃, ι〉. Also, since ι fixes 1 ∈ T , it follows that G̃1 = 〈H̃1, ι〉.
Now, both ι and elements of H̃1 preserve the order of elements in T (the
latter being acting as conjugations), implying that G̃1 preserves the orders
of elements in T . But G̃1 (being 2-transitive) acts transitively in T \ {1},
implying that T is an elementary abelian p groups, a contradiction.
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6 Permutation groups of prime degree

Theorem 6.1 (Burnside) Let G be a transitive permutation group on a set
Ω of prime size p. Then either G is doubly transitive or G is permutation
isomorphic to a group G̃ satisfying Zp ≤ G̃ ≤ AGL(1,Zp).

Throughout this section, let F = Zp, the field of order p, and let FΩ

denote the set of all functions from Ω to F. If we endow FΩ with the point-
wise addition and multiplication with scalars from F, it becomes an F-vector
space. For ω ∈ Ω, let χω ∈ FΩ be the characteristic function of ω. Then
{χω : ω ∈ Ω} is clearly a basis for FΩ.

Now let G act upon FΩ according to the rule:

fg(ω) = f(ωg
−1

), for all f ∈ FΩ, g ∈ G and ω ∈ Ω.

Observe that for each g ∈ G, the mapping Tg : FΩ → FΩ, Tg : f 7→ fg is in
fact an invertible linear transformation of the F-vector space FΩ. Moreover,
the mapping G 7→ GL(FΩ), g 7→ Tg, is an injective group homomorphism.
In particular, by identifying g with Tg, we may view G as a subgroup of
GL(FΩ). (CHECK ALL THIS!)

Further, let Hom(FΩ,FΩ) (denoted in short by Hom) be the F-linear
space of all linear transformations of FΩ, and let HomG(FΩ,FΩ) (denoted in
short by HomG) be the set of all those ϕ ∈ Hom that commute with every
g ∈ G. That is, ϕ ∈ HomG if and only if ϕ(f)g = ϕ(fg) for every g ∈ G and
f ∈ FΩ. (CHECK THAT THIS IS INDEED A SUBSPACE OF Hom.)

Note (CHECK!) that for g ∈ G and ω ∈ Ω, we have

(χω)g = χωg

and deduce that, for a fixed ω ∈ Ω, the mapping Φ: HomG → FΩ, Φ: ϕ →
ϕ(χω) is injective and F-linear. In particular, the dimension of HomG (as
an F-vector space) equals the dimension of the subspace Φ(HomG) of FΩ.

Now prove that f ∈ Φ(HomG) if and only if f is constant on each Gω-
orbit on Ω. Use this do deduce the following lemma:

Lemma 6.2 Let ω ∈ Ω.Then dimF HomG equals the number of orbits of Gω
on Ω.

We will also need the following lemma:

Lemma 6.3 Let F be a finite field of order p. Then, for every function
f : F→ F there exists a unique polynomial πf ∈ F[x] of degree at most p−1
such that πf and f coincide as functions on F.
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Let us now prove Burnside’s theorem. The theorem clearly holds for
p = 2 and 3 (A WORD OF EXPLANATION). So we shall assume that
p ≥ 5.

Let g be an element of order p in G and let P = 〈ρ〉 (PROVE THAT
P is in fact the Sylow p-subgroup of G). Since we want to determine the
group G only up to permutation isomorphism, we may assume that Ω = F
and ρ : α→ α− 1 for every α ∈ F.

In view of Lemma 6.3, we may identify FF by the F-vector space Fp−1[x]
of polynomials of degree at most p − 1. In view of this identification, we
may thus view ρ as the polynomial x− 1.

Recall that G can be viewed as a group of linear transformations of
the vector space FΩ (= FF = Fp−1[x]). It thus makes sense to ask which
subspaces of FΩ are G-invariant (preserved by G). In fact, in order to prove
the theorem, we need to show that the subspace of linear transformations
F1[x] is G-invariant. Indeed, if this is the case, then for an arbitrary g ∈ G,
the the g−1-image of the polynomial π(x) = x is an element of F1[x], and
thus there exist c, d ∈ F such that πg

−1
(x) = cx + d. If we evaluate this

polynomial equality at an arbitrary α ∈ F, we see that πg
−1

(α) = cα + d.
On the other hand, the left-hand side of the quality equals π(αg) = αg.
We have thus shown that for every g ∈ G, there exist c, d ∈ F such that
g : α 7→ cα + d for every α ∈ F. Since g is a permutation of F, we see that
c 6= 0, and the result follows.

The rest of the proof is thus devoted to the proof that the subspace F1[x]
of Fp−1[x] is G-invariant.

For r ∈ {0, 1, . . . , p− 1}, let Mr = Fr[x]. Let us first prove that the only
non-trivial P -invariant subspaces of Fp−1[x] are Mr for 0 ≤ r ≤ p − 1. To
this end, introduce the F-linear transformation

4 : Fp−1[x]→ Fp−1[x], 4 : f 7→ fρ − f ;

that is, (4f)(x) = f(x + 1) − f(x). Now observe that, if f is of degree r,
then 4f is of degree (exactly) r − 1 (here the zero polynomial is treated
as the polynomial of degree −1). This implies (PROVIDE DETAILS) that
every non-trivial4-invariant subspace of Fp−1[x] is one of Mr, 0 ≤ r ≤ p−1.

Now observe that ρ (as a linear transformation of Fp−1[x]) commutes
with 4 and that every P -invariant subspace is also 4-invariant (indeed,
since 4 = ρ − id), implying that the P -invariant subspaces of Mp−1 are
precisely Mr, as claimed.

Now observe that M−1 = 〈0〉, M0 (constants) and Mp−1 are also G-
invariant. Moreover, {f ∈ Fp−1[x] :

∑
α∈F f(α) = 0} is also a G-invariant
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subspace of codimension 1 (and must thus equal Mp−2).
Suppose now that for some r, 0 ≤ r ≤ p − 3, both Mr and Mr+1 are

G-invariant. Then Mr+1 : Mr = {f ∈ Fp−1[x] : fMr ≤ Mr+1} (here the
multiplication must be understood pointwise, that is, if the polynomials
in fMr that are of degree higher that p − 1 must be first interpreted as
functions and then the corresponding polynomials of degree at most p − 1
must be found) is also G-invariant (CHECK!), and equals M1 (CHECK!).
(WHY DOES THIS ARGUMENT FAIL WHEN r = p − 2?) Hence M1 is
G-invariant and the result follows.

We shall now assume that G is not double transitive and show that
such an r indeed exists. Take ϕ ∈ HomG and f ∈ Fp−1[x], and show that
ϕ(4f) = 4ϕ(f).

Now suppose that there exists ϕ ∈ HomG such that Im(ϕ) = Mt for
some t ∈ {1, 2, . . . , p− 2}. Then let r = t− 1 and observe that ϕ(Mp−2) =
ϕ(4Mp−1) = 4ϕ(Mp−1) = 4Mt = Mr. Now, since ϕ (as an element of
HomG) maps G-invariant subspaces to G-invariant subspaces, both Mr and
Mr+1 are G-invariant, and the result follows.

To conclude the proof, it thus suffices to show that such a ϕ exists. To
this end, take f ∈ Fp−1[x] of degree precisely p − 1 (say f(x) = xp−1).
Then {f,4f,42f, . . . ,4p−1f} forms a basis for Fp−1[x]. Use this to show
that Ψ: HomG → Fp−1[x], ϕ 7→ ϕ(f), is injective and F-linear. Now recall
that, since G is doubly transitive, we have dimF HomG ≥ 3. In particular,
ImΨ must contain a polynomial of degree t for some t ∈ {1, . . . , p − 2}
(WHY?). That is, there exists ϕ ∈ HomG such that ϕ(f) has degree t ∈
{1, . . . , p − 2}. Since ϕ commutes with 4 and since Fp−1[x] is spanned by
{f,4f,42f, . . . ,4p−1f}, it follows that Imϕ is spanned by {ϕ(f),4ϕ(f),
42ϕ(f), . . . ,4p−1ϕ(f)}, and thus Imϕ ≤ Mt. But on the other hand, Imϕ
is a G-invariant subspace containing a polynomial of degree t, implying that
Imϕ = Mt. This proofs the theorem.


