5 Structure of 2-transitive groups

Theorem 5.1 (Burnside) Let G be a 2-transitive permutation group on a set Ω. Then G possesses a unique minimal normal subgroup N and one of the two options occurs:

1. N is regular, elementary abelian, and G is permutation isomorphic to a subgroup of an affine group $\operatorname{AGL}\left(d, \mathbb{Z}_{p}\right)$ acting naturally on \mathbb{Z}_{p}^{d} with G_{ω} being a subgroup of $\mathrm{GL}\left(d, \mathbb{Z}_{p}\right)$ acting transitively on the non-zero vectors in \mathbb{Z}_{p}^{d}.
2. N is a non-abelian simple group acting primitively on Ω.

Proof. Let N be a minimal normal subgroup of G. Since N is a non-trivial normal subgroup of a primitive group, it is transitive. If N is not the unique minimal normal subgroup of G, then, by Theorem 4.6, the only other minimal normal subgroup is the centraliser $C_{G}(N)$, and both N and $C_{G}(N)$ are regular non-abelian normal subgroups of G. However, a regular normal subgroup of a 2 -transitive group is elementary abelian, a contradiction. This shows that N is the unique minimal normal subgroup of G.

If N is regular, then, as above, it is elementary abelian and (1) holds. Suppose thus that N is not regular.

Suppose first that N is imprimitive and let B be a minimal non-trivial block of imprimitivity for N. Let $\mathcal{B}=\left\{B^{g}: g \in G\right\}$. Since N is normal in G, each element of \mathcal{B} is a minimal block of imprimitivity for N. (Why?!) Since an intersection of two blocks is again a block, it follows that any two elements of \mathcal{B} intersect in at most one element.

Since B is not trivial, there exists two elements $\omega, \delta \in B$. Now take any $\omega^{\prime}, \delta^{\prime} \in \Omega$. Since G is 2-transitive, there exist $g \in G$ such that $\omega^{g}=\omega^{\prime}$ and $\delta^{g}=\delta^{\prime}$, and thus $\omega^{\prime}, \delta^{\prime} \in B^{g}$. Together with what we proved above, this shows that for any two elements of $\omega, \delta \in \Omega$, there exists a unique block in \mathcal{B} containing them; we shall denote this block by $[\omega \delta]$.

We will now show that $N_{\omega \delta}=1$ for any two $\omega, \delta \in \Omega$. Since each element of \mathcal{B} is a block of imprimitivity for N, it follows that N_{ω} fixes (set-wise) every block through ω. Now let $g \in N_{\omega \delta}$ and let γ be an element of Ω not contained in $[\omega \delta]$. Then $N_{\omega \delta}$ fixes set-wise $[\omega \gamma]$ as well as [$\left.\delta \gamma\right]$, thus fixing their intersection, which is γ. In particular, $N_{\omega \delta} \leq N_{\omega \gamma}$ for any $\gamma \in \Omega \backslash[\omega \delta]$. But then (by switching the roles of γ and δ), it follows that $N_{\omega \gamma}$ (and thus also $N_{\omega \delta}$) fixes every point not contained in $[\omega \gamma]$, and therefore every point on $[\omega \delta]$. In particular, $N_{\omega \delta}=1$, as claimed.

We have thus shown that N is a Frobenius group. We could now use the Frobenuis theorem to show that N contains a characteristic regular normal subgroup R, consisting of the identity and all fixed-point-free elements of N. Such a group would then be normal in G, and by minimality of N, we would have $N=R$, implying that N is regular itself, which contradicts out assumptions. Alternatively, to avoid appealing to the proof of the Frobenius theorem, we could continue in a more elementary way, which can be outlined as follows (you will be required to fill in details as a part of 2nd Assignment):

Let R^{*} be the set of all fixed-point-free elements of N and let $R=$ $R^{*} \cup\{1\}$. Prove that $|R|=n$, where $n=|\Omega|$. Use this to argue that for any two $\alpha, \beta \in \Omega$ there is a unique $g \in R^{*}$ mapping α to β. Now use 2 transitivity of G to conclude that all elements in R^{*} are conjugate within G. Now let p be a prime dividing n, and P a Sylow p-subgroup of N. Then P contains a fixed-point-free element of order p. So all elements in R^{*} have order p, and n is a power of p. Then it follows that P is transitive (why?), and so consists of the identity and all the elements in R^{*}; in particular, $P=R$, and thus R is a regular normal subgroup of G. Since R is regular and G primitive, R is minimal, and thus $N=R$, a contradiction.

Either way, we proved that whenever N is imprimitive, it is regular, and thus part (1) holds. Suppose now that N is primitive but not regular. Being a minimal normal subgroup of $G, N=T_{1} \times \ldots \times T_{k}$, where T_{i} are minimal normal subgroups of T, all isomorphic to some fixed normal non-abelian (why non-abelian?!) simple group T. On the other hand, N is primitive so either contains a unique minimal normal subgroup (and thus $k=1$) or it contains two distinct mutually centralising minimal normal subgroupsboth regular (here $k=2$).

We are thus left with the case where the unique minimal normal subgroup N is a direct product $T \times S$, where T and S are isomorphic, both regular, they centralise each other and are non-abelian simple. Moreover, and element of G either normalises both S and T or conjugates one to the other. Let \tilde{G} be the normaliser of N in $\operatorname{Sym}(\Omega)$. Then $G \leq \tilde{G}$ and hence \tilde{G} is 2 -transitive. By definition, N is normal in \tilde{G}, and since N is minimal normal in G, so it is in \tilde{G}. By what we showed, N is the unique minimal normal subgroup of \tilde{G}. Now let \tilde{H} be the normaliser of T in \tilde{G}; note that \tilde{H} is the kernel of the action of \tilde{G} on $\{T, S\}$ by conjugation and thus $|\tilde{G}: \tilde{H}|=2$; also $N \leq \tilde{H}$. Hence T is a regular normal subgroup in a primitive group \tilde{H}, hence, without loss of generality, $\Omega=T$ and $\tilde{H} \cong T \rtimes \tilde{H}_{1}$, in its natural action on T. Now recall that S is the centraliser of T in $\operatorname{Sym}(\Omega)=\operatorname{Sym}(T)$. But the group L of permutations $\lambda_{g}: t \mapsto g^{-} t, g \in T$, also centralises T and acts regularly on
T. Hence $S=L$, and thus $N=L \times T$. But the permutation $\iota \in \operatorname{Sym}(T)$, $g \mapsto g^{-1}$, conjugates S to L and vice versa, and thus belongs to $\tilde{G} \backslash \tilde{H}$. In particular, $\tilde{G}=\langle\tilde{H}, \iota\rangle$. Also, since ι fixes $1 \in T$, it follows that $\tilde{G}_{1}=\left\langle\tilde{H}_{1}, \iota\right\rangle$. Now, both ι and elements of \tilde{H}_{1} preserve the order of elements in T (the latter being acting as conjugations), implying that \tilde{G}_{1} preserves the orders of elements in T. But \tilde{G}_{1} (being 2-transitive) acts transitively in $T \backslash\{1\}$, implying that T is an elementary abelian p groups, a contradiction.

6 Permutation groups of prime degree

Theorem 6.1 (Burnside) Let G be a transitive permutation group on a set Ω of prime size p. Then either G is doubly transitive or G is permutation isomorphic to a group \tilde{G} satisfying $\mathbb{Z}_{p} \leq \tilde{G} \leq \operatorname{AGL}\left(1, \mathbb{Z}_{p}\right)$.

Throughout this section, let $\mathbb{F}=\mathbb{Z}_{p}$, the field of order p, and let \mathbb{F}^{Ω} denote the set of all functions from Ω to \mathbb{F}. If we endow \mathbb{F}^{Ω} with the pointwise addition and multiplication with scalars from \mathbb{F}, it becomes an \mathbb{F}-vector space. For $\omega \in \Omega$, let $\chi_{\omega} \in \mathbb{F}^{\Omega}$ be the characteristic function of ω. Then $\left\{\chi_{\omega}: \omega \in \Omega\right\}$ is clearly a basis for \mathbb{F}^{Ω}.

Now let G act upon \mathbb{F}^{Ω} according to the rule:

$$
f^{g}(\omega)=f\left(\omega^{g^{-1}}\right), \text { for all } f \in \mathbb{F}^{\Omega}, g \in G \text { and } \omega \in \Omega .
$$

Observe that for each $g \in G$, the mapping $T_{g}: \mathbb{F}^{\Omega} \rightarrow \mathbb{F}^{\Omega}, T_{g}: f \mapsto f^{g}$ is in fact an invertible linear transformation of the \mathbb{F}-vector space \mathbb{F}^{Ω}. Moreover, the mapping $G \mapsto \mathrm{GL}\left(\mathbb{F}^{\Omega}\right), g \mapsto T_{g}$, is an injective group homomorphism. In particular, by identifying g with T_{g}, we may view G as a subgroup of GL $\left(\mathbb{F}^{\Omega}\right)$. (CHECK ALL THIS!)

Further, let $\operatorname{Hom}\left(\mathbb{F}^{\Omega}, \mathbb{F}^{\Omega}\right)$ (denoted in short by Hom) be the \mathbb{F}-linear space of all linear transformations of \mathbb{F}^{Ω}, and let $\operatorname{Hom}_{G}\left(\mathbb{F}^{\Omega}, \mathbb{F}^{\Omega}\right)$ (denoted in short by Hom_{G}) be the set of all those $\varphi \in$ Hom that commute with every $g \in G$. That is, $\varphi \in \operatorname{Hom}_{G}$ if and only if $\varphi(f)^{g}=\varphi\left(f^{g}\right)$ for every $g \in G$ and $f \in \mathbb{F}^{\Omega}$. (CHECK THAT THIS IS INDEED A SUBSPACE OF Hom.)

Note (CHECK!) that for $g \in G$ and $\omega \in \Omega$, we have

$$
\left(\chi_{\omega}\right)^{g}=\chi_{\omega^{g}}
$$

and deduce that, for a fixed $\omega \in \Omega$, the mapping $\Phi: \operatorname{Hom}_{G} \rightarrow \mathbb{F}^{\Omega}, \Phi: \varphi \rightarrow$ $\varphi\left(\chi_{\omega}\right)$ is injective and \mathbb{F}-linear. In particular, the dimension of Hom_{G} (as an \mathbb{F}-vector space) equals the dimension of the subspace $\Phi\left(\operatorname{Hom}_{G}\right)$ of \mathbb{F}^{Ω}.

Now prove that $f \in \Phi\left(\operatorname{Hom}_{G}\right)$ if and only if f is constant on each $G_{\omega^{-}}$ orbit on Ω. Use this do deduce the following lemma:

Lemma 6.2 Let $\omega \in \Omega$. Then $\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}_{G}$ equals the number of orbits of G_{ω} on Ω.

We will also need the following lemma:
Lemma 6.3 Let \mathbb{F} be a finite field of order p. Then, for every function $f: \mathbb{F} \rightarrow \mathbb{F}$ there exists a unique polynomial $\pi_{f} \in \mathbb{F}[x]$ of degree at most $p-1$ such that π_{f} and f coincide as functions on \mathbb{F}.

Let us now prove Burnside's theorem. The theorem clearly holds for $p=2$ and 3 (A WORD OF EXPLANATION). So we shall assume that $p \geq 5$.

Let g be an element of order p in G and let $P=\langle\rho\rangle$ (PROVE THAT P is in fact the Sylow p-subgroup of G). Since we want to determine the group G only up to permutation isomorphism, we may assume that $\Omega=\mathbb{F}$ and $\rho: \alpha \rightarrow \alpha-1$ for every $\alpha \in \mathbb{F}$.

In view of Lemma 6.3 , we may identify $\mathbb{F}^{\mathbb{F}}$ by the \mathbb{F}-vector space $\mathbb{F}_{p-1}[x]$ of polynomials of degree at most $p-1$. In view of this identification, we may thus view ρ as the polynomial $x-1$.

Recall that G can be viewed as a group of linear transformations of the vector space $\mathbb{F}^{\Omega}\left(=\mathbb{F}^{\mathbb{F}}=\mathbb{F}_{p-1}[x]\right)$. It thus makes sense to ask which subspaces of \mathbb{F}^{Ω} are G-invariant (preserved by G). In fact, in order to prove the theorem, we need to show that the subspace of linear transformations $\mathbb{F}_{1}[x]$ is G-invariant. Indeed, if this is the case, then for an arbitrary $g \in G$, the the g^{-1}-image of the polynomial $\pi(x)=x$ is an element of $\mathbb{F}_{1}[x]$, and thus there exist $c, d \in \mathbb{F}$ such that $\pi^{g^{-1}}(x)=c x+d$. If we evaluate this polynomial equality at an arbitrary $\alpha \in \mathbb{F}$, we see that $\pi^{g^{-1}}(\alpha)=c \alpha+d$. On the other hand, the left-hand side of the quality equals $\pi\left(\alpha^{g}\right)=\alpha^{g}$. We have thus shown that for every $g \in G$, there exist $c, d \in \mathbb{F}$ such that $g: \alpha \mapsto c \alpha+d$ for every $\alpha \in \mathbb{F}$. Since g is a permutation of \mathbb{F}, we see that $c \neq 0$, and the result follows.

The rest of the proof is thus devoted to the proof that the subspace $\mathbb{F}_{1}[x]$ of $\mathbb{F}_{p-1}[x]$ is G-invariant.

For $r \in\{0,1, \ldots, p-1\}$, let $M_{r}=\mathbb{F}_{r}[x]$. Let us first prove that the only non-trivial P-invariant subspaces of $\mathbb{F}_{p-1}[x]$ are M_{r} for $0 \leq r \leq p-1$. To this end, introduce the \mathbb{F}-linear transformation

$$
\triangle: \mathbb{F}_{p-1}[x] \rightarrow \mathbb{F}_{p-1}[x], \quad \triangle: f \mapsto f^{\rho}-f
$$

that is, $(\triangle f)(x)=f(x+1)-f(x)$. Now observe that, if f is of degree r, then $\triangle f$ is of degree (exactly) $r-1$ (here the zero polynomial is treated as the polynomial of degree -1). This implies (PROVIDE DETAILS) that every non-trivial \triangle-invariant subspace of $\mathbb{F}_{p-1}[x]$ is one of $M_{r}, 0 \leq r \leq p-1$.

Now observe that ρ (as a linear transformation of $\mathbb{F}_{p-1}[x]$) commutes with \triangle and that every P-invariant subspace is also \triangle-invariant (indeed, since $\triangle=\rho-\mathrm{id}$), implying that the P-invariant subspaces of M_{p-1} are precisely M_{r}, as claimed.

Now observe that $M_{-1}=\langle 0\rangle, M_{0}$ (constants) and M_{p-1} are also G invariant. Moreover, $\left\{f \in \mathbb{F}_{p-1}[x]: \sum_{\alpha \in \mathbb{F}} f(\alpha)=0\right\}$ is also a G-invariant
subspace of codimension 1 (and must thus equal M_{p-2}).
Suppose now that for some $r, 0 \leq r \leq p-3$, both M_{r} and M_{r+1} are G-invariant. Then $M_{r+1}: M_{r}=\left\{f \in \mathbb{F}_{p-1}[x]: f M_{r} \leq M_{r+1}\right\}$ (here the multiplication must be understood pointwise, that is, if the polynomials in $f M_{r}$ that are of degree higher that $p-1$ must be first interpreted as functions and then the corresponding polynomials of degree at most $p-1$ must be found) is also G-invariant (CHECK!), and equals M_{1} (CHECK!). (WHY DOES THIS ARGUMENT FAIL WHEN $r=p-2$?) Hence M_{1} is G-invariant and the result follows.

We shall now assume that G is not double transitive and show that such an r indeed exists. Take $\varphi \in \operatorname{Hom}_{G}$ and $f \in \mathbb{F}_{p-1}[x]$, and show that $\varphi(\triangle f)=\Delta \varphi(f)$.

Now suppose that there exists $\varphi \in \operatorname{Hom}_{G}$ such that $\operatorname{Im}(\varphi)=M_{t}$ for some $t \in\{1,2, \ldots, p-2\}$. Then let $r=t-1$ and observe that $\varphi\left(M_{p-2}\right)=$ $\varphi\left(\triangle M_{p-1}\right)=\triangle \varphi\left(M_{p-1}\right)=\triangle M_{t}=M_{r}$. Now, since φ (as an element of $\left.\operatorname{Hom}_{G}\right)$ maps G-invariant subspaces to G-invariant subspaces, both M_{r} and M_{r+1} are G-invariant, and the result follows.

To conclude the proof, it thus suffices to show that such a φ exists. To this end, take $f \in \mathbb{F}_{p-1}[x]$ of degree precisely $p-1$ (say $f(x)=x^{p-1}$). Then $\left\{f, \triangle f, \triangle^{2} f, \ldots, \Delta^{p-1} f\right\}$ forms a basis for $\mathbb{F}_{p-1}[x]$. Use this to show that $\Psi: \operatorname{Hom}_{G} \rightarrow \mathbb{F}_{p-1}[x], \varphi \mapsto \varphi(f)$, is injective and \mathbb{F}-linear. Now recall that, since G is doubly transitive, we have $\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}_{G} \geq 3$. In particular, $\operatorname{Im} \Psi$ must contain a polynomial of degree t for some $t \in\{1, \ldots, p-2\}$ (WHY?). That is, there exists $\varphi \in \operatorname{Hom}_{G}$ such that $\varphi(f)$ has degree $t \in$ $\{1, \ldots, p-2\}$. Since φ commutes with \triangle and since $\mathbb{F}_{p-1}[x]$ is spanned by $\left\{f, \Delta f, \triangle^{2} f, \ldots, \triangle^{p-1} f\right\}$, it follows that $\operatorname{Im} \varphi$ is spanned by $\{\varphi(f), \Delta \varphi(f)$, $\left.\triangle^{2} \varphi(f), \ldots, \triangle^{p-1} \varphi(f)\right\}$, and thus $\operatorname{Im} \varphi \leq M_{t}$. But on the other hand, $\operatorname{Im} \varphi$ is a G-invariant subspace containing a polynomial of degree t, implying that $\operatorname{Im} \varphi=M_{t}$. This proofs the theorem.

