5 Structure of 2-transitive groups

Theorem 5.1 (Burnside) Let G be a 2-transitive permutation group on a set Ω . Then G possesses a unique minimal normal subgroup N and one of the two options occurs:

- 1. N is regular, elementary abelian, and G is permutation isomorphic to a subgroup of an affine group $AGL(d, \mathbb{Z}_p)$ acting naturally on \mathbb{Z}_p^d with G_{ω} being a subgroup of $GL(d, \mathbb{Z}_p)$ acting transitively on the non-zero vectors in \mathbb{Z}_p^d .
- 2. N is a non-abelian simple group acting primitively on Ω .

PROOF. Let N be a minimal normal subgroup of G. Since N is a non-trivial normal subgroup of a primitive group, it is transitive. If N is not the unique minimal normal subgroup of G, then, by Theorem 4.6, the only other minimal normal subgroup is the centraliser $C_G(N)$, and both N and $C_G(N)$ are regular non-abelian normal subgroups of G. However, a regular normal subgroup of a 2-transitive group is elementary abelian, a contradiction. This shows that N is the unique minimal normal subgroup of G.

If N is regular, then, as above, it is elementary abelian and (1) holds. Suppose thus that N is not regular.

Suppose first that N is imprimitive and let B be a minimal non-trivial block of imprimitivity for N. Let $\mathcal{B} = \{B^g : g \in G\}$. Since N is normal in G, each element of \mathcal{B} is a minimal block of imprimitivity for N. (Why?!) Since an intersection of two blocks is again a block, it follows that any two elements of \mathcal{B} intersect in at most one element.

Since B is not trivial, there exists two elements $\omega, \delta \in B$. Now take any $\omega', \delta' \in \Omega$. Since G is 2-transitive, there exist $g \in G$ such that $\omega^g = \omega'$ and $\delta^g = \delta'$, and thus $\omega', \delta' \in B^g$. Together with what we proved above, this shows that for any two elements of $\omega, \delta \in \Omega$, there exists a unique block in \mathcal{B} containing them; we shall denote this block by $[\omega \delta]$.

We will now show that $N_{\omega\delta} = 1$ for any two $\omega, \delta \in \Omega$. Since each element of \mathcal{B} is a block of imprimitivity for N, it follows that N_{ω} fixes (set-wise) every block through ω . Now let $g \in N_{\omega\delta}$ and let γ be an element of Ω not contained in $[\omega\delta]$. Then $N_{\omega\delta}$ fixes set-wise $[\omega\gamma]$ as well as $[\delta\gamma]$, thus fixing their intersection, which is γ . In particular, $N_{\omega\delta} \leq N_{\omega\gamma}$ for any $\gamma \in \Omega \setminus [\omega\delta]$. But then (by switching the roles of γ and δ), it follows that $N_{\omega\gamma}$ (and thus also $N_{\omega\delta}$) fixes every point not contained in $[\omega\gamma]$, and therefore every point on $[\omega\delta]$. In particular, $N_{\omega\delta} = 1$, as claimed.

We have thus shown that N is a Frobenius group. We could now use the Frobenius theorem to show that N contains a characteristic regular normal subgroup R, consisting of the identity and all fixed-point-free elements of N. Such a group would then be normal in G, and by minimality of N, we would have N = R, implying that N is regular itself, which contradicts out assumptions. Alternatively, to avoid appealing to the proof of the Frobenius theorem, we could continue in a more elementary way, which can be outlined as follows (you will be required to fill in details as a part of 2nd Assignment):

Let R^* be the set of all fixed-point-free elements of N and let $R = R^* \cup \{1\}$. Prove that |R| = n, where $n = |\Omega|$. Use this to argue that for any two $\alpha, \beta \in \Omega$ there is a unique $g \in R^*$ mapping α to β . Now use 2-transitivity of G to conclude that all elements in R^* are conjugate within G. Now let p be a prime dividing n, and P a Sylow p-subgroup of N. Then P contains a fixed-point-free element of order p. So all elements in R^* have order p, and n is a power of p. Then it follows that P is transitive (why?), and so consists of the identity and all the elements in R^* ; in particular, P = R, and thus R is a regular normal subgroup of G. Since R is regular and G primitive, R is minimal, and thus N = R, a contradiction.

Either way, we proved that whenever N is imprimitive, it is regular, and thus part (1) holds. Suppose now that N is primitive but not regular. Being a minimal normal subgroup of G, $N = T_1 \times \ldots \times T_k$, where T_i are minimal normal subgroups of T, all isomorphic to some fixed normal non-abelian (why non-abelian?!) simple group T. On the other hand, N is primitive so either contains a unique minimal normal subgroup (and thus k = 1) or it contains two distinct mutually centralising minimal normal subgroups—both regular (here k = 2).

We are thus left with the case where the unique minimal normal subgroup N is a direct product $T\times S$, where T and S are isomorphic, both regular, they centralise each other and are non-abelian simple. Moreover, and element of G either normalises both S and T or conjugates one to the other. Let \tilde{G} be the normaliser of N in $\mathrm{Sym}(\Omega)$. Then $G\leq \tilde{G}$ and hence \tilde{G} is 2-transitive. By definition, N is normal in \tilde{G} , and since N is minimal normal in G, so it is in \tilde{G} . By what we showed, N is the unique minimal normal subgroup of \tilde{G} . Now let \tilde{H} be the normaliser of T in \tilde{G} ; note that \tilde{H} is the kernel of the action of \tilde{G} on $\{T,S\}$ by conjugation and thus $|\tilde{G}:\tilde{H}|=2$; also $N\leq \tilde{H}$. Hence T is a regular normal subgroup in a primitive group \tilde{H} , hence, without loss of generality, $\Omega=T$ and $\tilde{H}\cong T\rtimes \tilde{H}_1$, in its natural action on T. Now recall that S is the centraliser of T in $\mathrm{Sym}(\Omega)=\mathrm{Sym}(T)$. But the group L of permutations $\lambda_q:t\mapsto g^-t$, $g\in T$, also centralises T and acts regularly on

T. Hence S=L, and thus $N=L\times T$. But the permutation $\iota\in \operatorname{Sym}(T)$, $g\mapsto g^{-1}$, conjugates S to L and vice versa, and thus belongs to $\tilde{G}\setminus \tilde{H}$. In particular, $\tilde{G}=\langle \tilde{H},\iota\rangle$. Also, since ι fixes $1\in T$, it follows that $\tilde{G}_1=\langle \tilde{H}_1,\iota\rangle$. Now, both ι and elements of \tilde{H}_1 preserve the order of elements in T (the latter being acting as conjugations), implying that \tilde{G}_1 preserves the orders of elements in T. But \tilde{G}_1 (being 2-transitive) acts transitively in $T\setminus\{1\}$, implying that T is an elementary abelian p groups, a contradiction.

6 Permutation groups of prime degree

THEOREM 6.1 (Burnside) Let G be a transitive permutation group on a set Ω of prime size p. Then either G is doubly transitive or G is permutation isomorphic to a group \tilde{G} satisfying $\mathbb{Z}_p \leq \tilde{G} \leq \mathrm{AGL}(1,\mathbb{Z}_p)$.

Throughout this section, let $\mathbb{F} = \mathbb{Z}_p$, the field of order p, and let \mathbb{F}^{Ω} denote the set of all functions from Ω to \mathbb{F} . If we endow \mathbb{F}^{Ω} with the pointwise addition and multiplication with scalars from \mathbb{F} , it becomes an \mathbb{F} -vector space. For $\omega \in \Omega$, let $\chi_{\omega} \in \mathbb{F}^{\Omega}$ be the characteristic function of ω . Then $\{\chi_{\omega} : \omega \in \Omega\}$ is clearly a basis for \mathbb{F}^{Ω} .

Now let G act upon \mathbb{F}^{Ω} according to the rule:

$$f^g(\omega) = f(\omega^{g^{-1}}), \text{ for all } f \in \mathbb{F}^{\Omega}, g \in G \text{ and } \omega \in \Omega.$$

Observe that for each $g \in G$, the mapping $T_g \colon \mathbb{F}^{\Omega} \to \mathbb{F}^{\Omega}$, $T_g \colon f \mapsto f^g$ is in fact an invertible linear transformation of the \mathbb{F} -vector space \mathbb{F}^{Ω} . Moreover, the mapping $G \mapsto \operatorname{GL}(\mathbb{F}^{\Omega})$, $g \mapsto T_g$, is an injective group homomorphism. In particular, by identifying g with T_g , we may view G as a subgroup of $\operatorname{GL}(\mathbb{F}^{\Omega})$. (CHECK ALL THIS!)

Further, let $\operatorname{Hom}(\mathbb{F}^{\Omega}, \mathbb{F}^{\Omega})$ (denoted in short by Hom) be the \mathbb{F} -linear space of all linear transformations of \mathbb{F}^{Ω} , and let $\operatorname{Hom}_G(\mathbb{F}^{\Omega}, \mathbb{F}^{\Omega})$ (denoted in short by Hom_G) be the set of all those $\varphi \in \operatorname{Hom}$ that commute with every $g \in G$. That is, $\varphi \in \operatorname{Hom}_G$ if and only if $\varphi(f)^g = \varphi(f^g)$ for every $g \in G$ and $f \in \mathbb{F}^{\Omega}$. (CHECK THAT THIS IS INDEED A SUBSPACE OF Hom.)

Note (CHECK!) that for $g \in G$ and $\omega \in \Omega$, we have

$$(\chi_{\omega})^g = \chi_{\omega^g}$$

and deduce that, for a fixed $\omega \in \Omega$, the mapping $\Phi \colon \operatorname{Hom}_G \to \mathbb{F}^{\Omega}$, $\Phi \colon \varphi \to \varphi(\chi_{\omega})$ is injective and \mathbb{F} -linear. In particular, the dimension of Hom_G (as an \mathbb{F} -vector space) equals the dimension of the subspace $\Phi(\operatorname{Hom}_G)$ of \mathbb{F}^{Ω} .

Now prove that $f \in \Phi(\operatorname{Hom}_G)$ if and only if f is constant on each G_{ω} orbit on Ω . Use this do deduce the following lemma:

LEMMA 6.2 Let $\omega \in \Omega$. Then $\dim_{\mathbb{F}} Hom_G$ equals the number of orbits of G_{ω} on Ω .

We will also need the following lemma:

LEMMA 6.3 Let \mathbb{F} be a finite field of order p. Then, for every function $f: \mathbb{F} \to \mathbb{F}$ there exists a unique polynomial $\pi_f \in \mathbb{F}[x]$ of degree at most p-1 such that π_f and f coincide as functions on \mathbb{F} .

Let us now prove Burnside's theorem. The theorem clearly holds for p=2 and 3 (A WORD OF EXPLANATION). So we shall assume that $p\geq 5$.

Let g be an element of order p in G and let $P = \langle \rho \rangle$ (PROVE THAT P is in fact the Sylow p-subgroup of G). Since we want to determine the group G only up to permutation isomorphism, we may assume that $\Omega = \mathbb{F}$ and $\rho \colon \alpha \to \alpha - 1$ for every $\alpha \in \mathbb{F}$.

In view of Lemma 6.3, we may identify $\mathbb{F}^{\mathbb{F}}$ by the \mathbb{F} -vector space $\mathbb{F}_{p-1}[x]$ of polynomials of degree at most p-1. In view of this identification, we may thus view ρ as the polynomial x-1.

Recall that G can be viewed as a group of linear transformations of the vector space \mathbb{F}^{Ω} (= $\mathbb{F}^{\mathbb{F}} = \mathbb{F}_{p-1}[x]$). It thus makes sense to ask which subspaces of \mathbb{F}^{Ω} are G-invariant (preserved by G). In fact, in order to prove the theorem, we need to show that the subspace of linear transformations $\mathbb{F}_1[x]$ is G-invariant. Indeed, if this is the case, then for an arbitrary $g \in G$, the the g^{-1} -image of the polynomial $\pi(x) = x$ is an element of $\mathbb{F}_1[x]$, and thus there exist $c, d \in \mathbb{F}$ such that $\pi^{g^{-1}}(x) = cx + d$. If we evaluate this polynomial equality at an arbitrary $\alpha \in \mathbb{F}$, we see that $\pi^{g^{-1}}(\alpha) = c\alpha + d$. On the other hand, the left-hand side of the quality equals $\pi(\alpha^g) = \alpha^g$. We have thus shown that for every $g \in G$, there exist $c, d \in \mathbb{F}$ such that $g \colon \alpha \mapsto c\alpha + d$ for every $\alpha \in \mathbb{F}$. Since g is a permutation of \mathbb{F} , we see that $c \neq 0$, and the result follows.

The rest of the proof is thus devoted to the proof that the subspace $\mathbb{F}_1[x]$ of $\mathbb{F}_{p-1}[x]$ is G-invariant.

For $r \in \{0, 1, ..., p-1\}$, let $M_r = \mathbb{F}_r[x]$. Let us first prove that the only non-trivial P-invariant subspaces of $\mathbb{F}_{p-1}[x]$ are M_r for $0 \le r \le p-1$. To this end, introduce the \mathbb{F} -linear transformation

$$\triangle \colon \mathbb{F}_{p-1}[x] \to \mathbb{F}_{p-1}[x], \ \triangle \colon f \mapsto f^{\rho} - f;$$

that is, $(\triangle f)(x) = f(x+1) - f(x)$. Now observe that, if f is of degree r, then $\triangle f$ is of degree (exactly) r-1 (here the zero polynomial is treated as the polynomial of degree -1). This implies (PROVIDE DETAILS) that every non-trivial \triangle -invariant subspace of $\mathbb{F}_{p-1}[x]$ is one of M_r , $0 \le r \le p-1$.

Now observe that ρ (as a linear transformation of $\mathbb{F}_{p-1}[x]$) commutes with Δ and that every P-invariant subspace is also Δ -invariant (indeed, since $\Delta = \rho - \mathrm{id}$), implying that the P-invariant subspaces of M_{p-1} are precisely M_r , as claimed.

Now observe that $M_{-1} = \langle 0 \rangle$, M_0 (constants) and M_{p-1} are also G-invariant. Moreover, $\{ f \in \mathbb{F}_{p-1}[x] : \sum_{\alpha \in \mathbb{F}} f(\alpha) = 0 \}$ is also a G-invariant

subspace of codimension 1 (and must thus equal M_{p-2}).

Suppose now that for some r, $0 \le r \le p-3$, both M_r and M_{r+1} are G-invariant. Then $M_{r+1}: M_r = \{f \in \mathbb{F}_{p-1}[x]: fM_r \le M_{r+1}\}$ (here the multiplication must be understood pointwise, that is, if the polynomials in fM_r that are of degree higher that p-1 must be first interpreted as functions and then the corresponding polynomials of degree at most p-1 must be found) is also G-invariant (CHECK!), and equals M_1 (CHECK!). (WHY DOES THIS ARGUMENT FAIL WHEN r=p-2?) Hence M_1 is G-invariant and the result follows.

We shall now assume that G is not double transitive and show that such an r indeed exists. Take $\varphi \in \operatorname{Hom}_G$ and $f \in \mathbb{F}_{p-1}[x]$, and show that $\varphi(\triangle f) = \triangle \varphi(f)$.

Now suppose that there exists $\varphi \in \operatorname{Hom}_G$ such that $\operatorname{Im}(\varphi) = M_t$ for some $t \in \{1, 2, \dots, p-2\}$. Then let r = t-1 and observe that $\varphi(M_{p-2}) = \varphi(\triangle M_{p-1}) = \triangle \varphi(M_{p-1}) = \triangle M_t = M_r$. Now, since φ (as an element of Hom_G) maps G-invariant subspaces to G-invariant subspaces, both M_r and M_{r+1} are G-invariant, and the result follows.

To conclude the proof, it thus suffices to show that such a φ exists. To this end, take $f \in \mathbb{F}_{p-1}[x]$ of degree precisely p-1 (say $f(x)=x^{p-1}$). Then $\{f, \Delta f, \Delta^2 f, \dots, \Delta^{p-1} f\}$ forms a basis for $\mathbb{F}_{p-1}[x]$. Use this to show that $\Psi \colon \operatorname{Hom}_G \to \mathbb{F}_{p-1}[x]$, $\varphi \mapsto \varphi(f)$, is injective and \mathbb{F} -linear. Now recall that, since G is doubly transitive, we have $\dim_{\mathbb{F}} \operatorname{Hom}_G \geq 3$. In particular, $\operatorname{Im}\Psi$ must contain a polynomial of degree t for some $t \in \{1,\dots,p-2\}$ (WHY?). That is, there exists $\varphi \in \operatorname{Hom}_G$ such that $\varphi(f)$ has degree $t \in \{1,\dots,p-2\}$. Since φ commutes with Δ and since $\mathbb{F}_{p-1}[x]$ is spanned by $\{f,\Delta f,\Delta^2 f,\dots,\Delta^{p-1} f\}$, it follows that $\operatorname{Im}\varphi$ is spanned by $\{\varphi(f),\Delta\varphi(f),\Delta^2\varphi(f),\dots,\Delta^{p-1}\varphi(f)\}$, and thus $\operatorname{Im}\varphi \leq M_t$. But on the other hand, $\operatorname{Im}\varphi$ is a G-invariant subspace containing a polynomial of degree t, implying that $\operatorname{Im}\varphi = M_t$. This proofs the theorem.