Permutation groups — graduate course Spring 2014 GRADUATE COURSE IN MATHEMATICS ASSIGNMENT NO. 1

- 1. Let G be an abelian group acting faithfully on a set Ω . Show that the action is semiregular. (10 points)
- 2. Find two actions of a group G that are isomorphism but not equivalent. (15 points)
- 3. Let G act transitively on a set Ω , $|\Omega| \ge 2$, and let $\emptyset \ne \Delta \subseteq \Omega$. Show that Δ is not a block of this action if and only if for every pair $(\alpha, \beta) \in \Omega \times \Omega$ there exists $g \in G$ such that $\alpha \in \Delta^g$ but $\beta \notin \Delta^g$. (25 points)
- 4. Let \mathbb{F} be a finite field, $|\mathbb{F}| \geq 4$, and let $G = \text{PGL}(2, \mathbb{F})$ act on $\mathbb{F} \cup \{\infty\}$ in the usual way. Analyse the structure of the group G_{∞} . Show that G_{ω} acts transitively on $\Omega \setminus \{\omega\}$ for every $\omega \in \Omega$. Moreover, prove that $G_{\omega\delta}$ acts transitively on $\Omega \setminus \{\omega, \delta\}$ for every pair $\omega, \delta \in \Omega$. (25 points)
- 5. Let G be a finite group and let $\rho: G \times G \to \text{Sym}(G)$ be the group action of $G \times G$ on G defined by:

$$\omega^{\rho(g,h)} = g^{-1}\omega h$$
, for all $\omega, g, h \in G$.

Under what condition on G will this action be faithful? When is it going to be primitive? (25 points)