Group Theory 2013/14 - homework 1

(1) Let $D_{8}=\left\langle a, b \mid a^{4}=b^{2}=1, a b=b a^{-1}\right\rangle$ be the dihedral group of order 8 . Check that the assignment

$$
a \mapsto\left(\begin{array}{cc}
-7 & 10 \\
-5 & 7
\end{array}\right), b \mapsto\left(\begin{array}{cc}
-5 & 6 \\
-4 & 5
\end{array}\right)
$$

determines a presentation of D_{8} over \mathbb{C}. Is this presentation irreducible?
(2) The quaternion group Q_{8} of order 8 can be considered as the subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ generated by the matrices

$$
\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \text { and }\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Find all irreducible representations of Q_{8} over \mathbb{C}.
(3) Let G be a cyclic group of order n and k a field.
(a) Suppose that the characteristic of k does not divide n. Prove that $k G$ can be written as a direct sum of pairwise non-equivalent irreducible representations, whose degrees are the same as the degrees of the irreducible factors of $X^{n}-1$ in $k[X]$.
(b) Suppose that n is prime and $k=\mathbb{Q}$. Show that G has an irreducible representation S of degree $n-1$, and that $\operatorname{End}_{k G}(S) \cong \mathbb{Q}\left(e^{2 \pi i / n}\right)$.
(4) Let $n>1$ and $x \in A_{n}$. Prove the following:
(a) If x commutes with some odd permutation of S_{n}, then the conjugacy class of x in A_{n} is the same as the conjugacy class of x in S_{n}.
(b) If x does not commute with any odd permutation in S_{n}, then the conjugacy class of x in S_{n} is a disjoint union of the conjugacy class of x in A_{n} and the conjugacy class of (12)x(12) in A_{n}.

This homework is due 11 November 2013.

