Group Theory 2013/14 – Homework 1

(1) Let $D_8 = \langle a, b \mid a^4 = b^2 = 1, ab = ba^{-1} \rangle$ be the dihedral group of order 8. Check that the assignment

$$a \mapsto \begin{pmatrix} -7 & 10 \\ -5 & 7 \end{pmatrix}, \ b \mapsto \begin{pmatrix} -5 & 6 \\ -4 & 5 \end{pmatrix}$$

determines a presentation of D_8 over \mathbb{C} . Is this presentation irreducible?

(2) The quaternion group Q₈ of order 8 can be considered as the subgroup of GL₂(C) generated by the matrices

$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Find all irreducible representations of Q_8 over \mathbb{C} .

- (3) Let G be a cyclic group of order n and k a field.
 - (a) Suppose that the characteristic of k does not divide n. Prove that kG can be written as a direct sum of pairwise non-equivalent irreducible representations, whose degrees are the same as the degrees of the irreducible factors of $X^n 1$ in k[X].
 - (b) Suppose that n is prime and $k = \mathbb{Q}$. Show that G has an irreducible representation S of degree n-1, and that $\operatorname{End}_{kG}(S) \cong \mathbb{Q}(e^{2\pi i/n})$.
- (4) Let n > 1 and $x \in A_n$. Prove the following:
 - (a) If x commutes with some odd permutation of S_n , then the conjugacy class of x in A_n is the same as the conjugacy class of x in S_n .
 - (b) If x does not commute with any odd permutation in S_n , then the conjugacy class of x in S_n is a disjoint union of the conjugacy class of x in A_n and the conjugacy class of (12)x(12) in A_n .

This homework is due 11 November 2013.