

Master
Theorem
rincoren
CSE235

Introduction Pitfalls Examples

4th Condition

Master Theorem

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry

Spring 2006

Computer Science & Engineering 235 Introduction to Discrete Mathematics

Master Theorem I

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

When analyzing algorithms, recall that we only care about the *asymptotic behavior*.

Recursive algorithms are no different. Rather than *solve* exactly the recurrence relation associated with the cost of an algorithm, it is enough to give an asymptotic characterization.

The main tool for doing this is the master theorem.

Master Theorem II

Master Theorem

CSE235

Introduction

Pitfalls

Examples

4th Condition

Theorem (Master Theorem)

Let T(n) be a monotonically increasing function that satisfies

$$\begin{aligned} T(n) &= aT(\frac{n}{b}) + f(n) \\ T(1) &= c \end{aligned}$$

where $a \ge 1, b \ge 2, c > 0$. If $f(n) \in \Theta(n^d)$ where $d \ge 0$, then

$$T(n) = \begin{cases} \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^d \log n) & \text{if } a = b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

You cannot use the Master Theorem if

- T(n) is not monotone, ex: $T(n) = \sin n$
- f(n) is not a polynomial, ex: $T(n) = 2T(\frac{n}{2}) + 2^n$
- b cannot be expressed as a constant, ex: $T(n)=T(\sqrt{n})$

Note here, that the Master Theorem does *not* solve a recurrence relation.

Does the base case remain a concern?

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Let $T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$. What are the parameters?

a = b = d =

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Let $T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$. What are the parameters?

 $\begin{array}{rrrr} a & = & 1 \\ b & = \\ d & = \end{array}$

Master Theorem CSE235

Introduction

Pitfalls Examples 4th Condition Let $T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$. What are the parameters?

$$\begin{array}{ccc} a & = & 1 \\ b & = & 2 \\ d & = & \end{array}$$

a - 1

Master Theorem CSE235

Introduction Pitfalls Examples 4th Condition Let $T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$. What are the parameters?

$$a = 1$$
$$b = 2$$
$$d = 2$$

・ロト・日本・モート モー うへぐ

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Let $T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$. What are the parameters?

$$\begin{array}{rrrrr} a & = & 1 \\ b & = & 2 \\ d & = & 2 \end{array}$$

Therefore which condition?

Since $1 < 2^2$, case 1 applies.

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Let $T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$. What are the parameters?

$$\begin{array}{rrrrr} a & = & 1 \\ b & = & 2 \\ d & = & 2 \end{array}$$

Therefore which condition?

Since $1 < 2^2$, case 1 applies.

Thus we conclude that

$$T(n) \in \Theta(n^d) = \Theta(n^2)$$

Master Theorem CSE235

Let $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42$. What are the parameters?

Introduction

Pitfalls

Examples

4th Condition

a = b = d =

Master Theorem CSE235

Let $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42$. What are the parameters?

Introduction

Pitfalls

Examples

4th Condition

 $\begin{array}{rrrr} a & = & 2 \\ b & = \\ d & = \end{array}$

Master Theorem CSE235

Let $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42$. What are the parameters?

Introduction

Pitfalls

Examples

4th Condition

 $\begin{array}{rrrr} a & = & 2 \\ b & = & 4 \\ d & = & \end{array}$

Master Theorem CSE235

Let $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42$. What are the parameters?

Introduction

Pitfalls

Examples

4th Condition

 $\begin{array}{rcl} a & = & 2 \\ b & = & 4 \\ d & = & \frac{1}{2} \end{array}$

Master Theorem CSE235

Introduction

Pitfalls

Examples

Let $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42$. What are the parameters?

$$\begin{array}{rrrr} a & = & 2 \\ b & = & 4 \\ d & = & \frac{1}{2} \end{array}$$

4th Condition

Therefore which condition?

Since $2 = 4^{\frac{1}{2}}$, case 2 applies.

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Let $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42$. What are the parameters?

$$\begin{array}{rcl} a & = & 2 \\ b & = & 4 \\ d & = & \frac{1}{2} \end{array}$$

Therefore which condition?

Since $2 = 4^{\frac{1}{2}}$, case 2 applies.

Thus we conclude that

$$T(n) \in \Theta(n^d \log n) = \Theta(\sqrt{n} \log n)$$

Master Theorem CSE235

Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

Introduction

Pitfalls

Examples

4th Condition

a = b = d = d

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

a	=	3
b	=	
d	=	

・ロト・日本・モート モー うへぐ

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

$$\begin{array}{rrrr} a & = & 3 \\ b & = & 2 \\ d & = & \end{array}$$

・ロト・日本・モート モー うへぐ

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

$$\begin{array}{rrrrr} a & = & 3 \\ b & = & 2 \\ d & = & 1 \end{array}$$

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

$$\begin{array}{rrrrr} a & = & 3 \\ b & = & 2 \\ d & = & 1 \end{array}$$

Therefore which condition?

Since $3 > 2^1$, case 3 applies.

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

$$\begin{array}{rrrrr} a & = & 3 \\ b & = & 2 \\ d & = & 1 \end{array}$$

Therefore which condition?

Since $3 > 2^1$, case 3 applies. Thus we conclude that

$$T(n) \in \Theta(n^{\log_b a}) = \Theta(n^{\log_2 3})$$

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

$$\begin{array}{rrrrr} a & = & 3 \\ b & = & 2 \\ d & = & 1 \end{array}$$

Therefore which condition?

Since $3 > 2^1$, case 3 applies. Thus we conclude that

$$T(n) \in \Theta(n^{\log_b a}) = \Theta(n^{\log_2 3})$$

Note that $\log_2 3\approx 1.5849\ldots$. Can we say that $T(n)\in \Theta(n^{1.5849})$?

"Fourth" Condition

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Recall that we cannot use the Master Theorem if f(n) (the non-recursive cost) is not polynomial.

There is a limited 4-th condition of the Master Theorem that allows us to consider polylogarithmic functions.

Corollary

If
$$f(n) \in \Theta(n^{\log_b a} \log^k n)$$
 for some $k \ge 0$ then

 $T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$

This final condition is fairly limited and we present it merely for completeness.

"Fourth" Condition

Master Theorem CSE235

Introduction

Pitfalls

Examples

4th Condition

Say that we have the following recurrence relation:

$$T(n) = 2T\left(\frac{n}{2}\right) + n\log n$$

Clearly, a = 2, b = 2 but f(n) is not a polynomial. However,

 $f(n) \in \Theta(n \log n)$

for k=1, therefore, by the 4-th case of the Master Theorem we can say that

 $T(n) \in \Theta(n \log^2 n)$