Master Theorem

Introduction
Pitfalls
Examples
4th Condition

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry

Spring 2006

Computer Science \& Engineering 235 Introduction to Discrete Mathematics

Master Theorem I

Master Theorem CSE235

When analyzing algorithms, recall that we only care about the asymptotic behavior.

Recursive algorithms are no different. Rather than solve exactly the recurrence relation associated with the cost of an algorithm, it is enough to give an asymptotic characterization.

The main tool for doing this is the master theorem.

Nebiaska

Master
Theorem
CSE235

Introduction
Pitfalls
Examples
4th Condition

Master Theorem II

Theorem (Master Theorem)

Let $T(n)$ be a monotonically increasing function that satisfies

$$
\begin{aligned}
& T(n)=a T\left(\frac{n}{b}\right)+f(n) \\
& T(1)=c
\end{aligned}
$$

where $a \geq 1, b \geq 2, c>0$. If $f(n) \in \Theta\left(n^{d}\right)$ where $d \geq 0$, then

$$
T(n)= \begin{cases}\Theta\left(n^{d}\right) & \text { if } a<b^{d} \\ \Theta\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ \Theta\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Nebiaska

Lincoln

Master Theorem CSE235

Introduction

Master Theorem

Pitfalls

You cannot use the Master Theorem if

- $T(n)$ is not monotone, ex: $T(n)=\sin n$
- $f(n)$ is not a polynomial, ex: $T(n)=2 T\left(\frac{n}{2}\right)+2^{n}$
- b cannot be expressed as a constant, ex: $T(n)=T(\sqrt{n})$

Note here, that the Master Theorem does not solve a recurrence relation.

Does the base case remain a concern?

Nebiasska

Master Theorem

Example 1

Let $T(n)=T\left(\frac{n}{2}\right)+\frac{1}{2} n^{2}+n$. What are the parameters?

$$
\begin{aligned}
a & = \\
b & = \\
d & =
\end{aligned}
$$

Therefore which condition?

Nebiaska

Master Theorem

Example 1

Let $T(n)=T\left(\frac{n}{2}\right)+\frac{1}{2} n^{2}+n$. What are the parameters?

$$
\begin{aligned}
a & =1 \\
b & = \\
d & =
\end{aligned}
$$

Therefore which condition?

Nebiaska

Master Theorem

Example 1

Let $T(n)=T\left(\frac{n}{2}\right)+\frac{1}{2} n^{2}+n$. What are the parameters?

$$
\begin{aligned}
a & =1 \\
b & =2 \\
d & =
\end{aligned}
$$

Therefore which condition?

Nebiaska

Master Theorem

Example 1

Let $T(n)=T\left(\frac{n}{2}\right)+\frac{1}{2} n^{2}+n$. What are the parameters?

$$
\begin{aligned}
a & =1 \\
b & =2 \\
d & =2
\end{aligned}
$$

Therefore which condition?

Nebiasska

Master Theorem

Example 1

Let $T(n)=T\left(\frac{n}{2}\right)+\frac{1}{2} n^{2}+n$. What are the parameters?

$$
\begin{aligned}
a & =1 \\
b & =2 \\
d & =2
\end{aligned}
$$

Therefore which condition?
Since $1<2^{2}$, case 1 applies.

Neboraska

Master Theorem

Example 1

Let $T(n)=T\left(\frac{n}{2}\right)+\frac{1}{2} n^{2}+n$. What are the parameters?

$$
\begin{aligned}
a & =1 \\
b & =2 \\
d & =2
\end{aligned}
$$

Therefore which condition?
Since $1<2^{2}$, case 1 applies.
Thus we conclude that

$$
T(n) \in \Theta\left(n^{d}\right)=\Theta\left(n^{2}\right)
$$

Nebiaska

Master Theorem

Example 2

Let $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}+42$. What are the parameters?

$$
\begin{aligned}
a & = \\
b & = \\
d & =
\end{aligned}
$$

Therefore which condition?

Nebiaska

Master Theorem

Example 2

Let $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}+42$. What are the parameters?

$$
\begin{aligned}
a & =2 \\
b & = \\
d & =
\end{aligned}
$$

Therefore which condition?

Nebiasta

Master Theorem

Example 2

Let $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}+42$. What are the parameters?

$$
\begin{aligned}
a & =2 \\
b & =4 \\
d & =
\end{aligned}
$$

Therefore which condition?

Nebiaska

Master Theorem

Example 2

Let $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}+42$. What are the parameters?

$$
\begin{aligned}
a & =2 \\
b & =4 \\
d & =\frac{1}{2}
\end{aligned}
$$

Therefore which condition?

Nebiasska

Master Theorem

Example 2

Let $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}+42$. What are the parameters?

$$
\begin{aligned}
a & =2 \\
b & =4 \\
d & =\frac{1}{2}
\end{aligned}
$$

Therefore which condition?
Since $2=4^{\frac{1}{2}}$, case 2 applies.

Neboraska

Master Theorem

Example 2

Let $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}+42$. What are the parameters?

$$
\begin{aligned}
a & =2 \\
b & =4 \\
d & =\frac{1}{2}
\end{aligned}
$$

Therefore which condition?
Since $2=4^{\frac{1}{2}}$, case 2 applies.
Thus we conclude that

$$
T(n) \in \Theta\left(n^{d} \log n\right)=\Theta(\sqrt{n} \log n)
$$

Nebiaska

$$
\text { Let } T(n)=3 T\left(\frac{n}{2}\right)+\frac{3}{4} n+1 \text {. What are the parameters? }
$$

$$
\begin{aligned}
a & = \\
b & = \\
d & =
\end{aligned}
$$

Therefore which condition?

Master Theorem

Example 3

Introduction
Pitfalls
Examples
4th Condition

$$
\text { Let } T(n)=3 T\left(\frac{n}{2}\right)+\frac{3}{4} n+1 \text {. What are the parameters? }
$$

$$
\begin{aligned}
a & =3 \\
b & = \\
d & =
\end{aligned}
$$

Therefore which condition?

Nebiaska

Master Theorem

Example 3

Nebiaska

$$
\text { Let } T(n)=3 T\left(\frac{n}{2}\right)+\frac{3}{4} n+1 \text {. What are the parameters? }
$$

Therefore which condition?

Master Theorem

Example 3

Introduction
Pitfalls
Examples
4th Condition

$$
\begin{aligned}
a & =3 \\
b & =2 \\
d & =
\end{aligned}
$$

Nebiaska

$$
\text { Let } T(n)=3 T\left(\frac{n}{2}\right)+\frac{3}{4} n+1 \text {. What are the parameters? }
$$

$$
\begin{aligned}
a & =3 \\
b & =2 \\
d & =1
\end{aligned}
$$

Therefore which condition?

Master Theorem

Example 3

Introduction
Pitfalls
Examples
4th Condition

Abstract

Nebiaska

Let $T(n)=3 T\left(\frac{n}{2}\right)+\frac{3}{4} n+1$. What are the parameters?
Introduction

Pitfalls

Examples
4th Condition

Master Theorem

Example 3

$$
\text { Let } T(n)=3 T\left(\frac{n}{2}\right)+\frac{0}{4} n+1 \text {. What are the parameters? }
$$

$$
\begin{aligned}
a & =3 \\
b & =2 \\
d & =1
\end{aligned}
$$

Therefore which condition?
Since $3>2^{1}$, case 3 applies.

Nebraska
 Lincoln

Master
Theorem
CSE235
Let $T(n)=3 T\left(\frac{n}{2}\right)+\frac{3}{4} n+1$. What are the parameters?
Introduction

Pitfalls

Examples
4th Condition

Master Theorem

Example 3

$$
2(2) 4-1-10-1+2
$$

$$
\begin{aligned}
a & =3 \\
b & =2 \\
d & =1
\end{aligned}
$$

Therefore which condition?
Since $3>2^{1}$, case 3 applies. Thus we conclude that

$$
T(n) \in \Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{\log _{2} 3}\right)
$$

Nebraska
 Lincoln

Let $T(n)=3 T\left(\frac{n}{2}\right)+\frac{3}{4} n+1$. What are the parameters?

Master Theorem

Example 3

$$
\begin{aligned}
a & =3 \\
b & =2 \\
d & =1
\end{aligned}
$$

Therefore which condition?
Since $3>2^{1}$, case 3 applies. Thus we conclude that

$$
T(n) \in \Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{\log _{2} 3}\right)
$$

Note that $\log _{2} 3 \approx 1.5849 \ldots$. Can we say that $T(n) \in \Theta\left(n^{1.5849}\right)$?

Nebraska
 Lincoln

"Fourth" Condition

Master
Theorem
CSE235

Introduction
Pitfalls

Recall that we cannot use the Master Theorem if $f(n)$ (the non-recursive cost) is not polynomial.

There is a limited 4-th condition of the Master Theorem that allows us to consider polylogarithmic functions.

Corollary

$$
\begin{aligned}
& \text { If } f(n) \in \Theta\left(n^{\log _{b} a} \log ^{k} n\right) \text { for some } k \geq 0 \text { then } \\
& \qquad T(n) \in \Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)
\end{aligned}
$$

This final condition is fairly limited and we present it merely for completeness.

Nebiaska

Lincoln

"Fourth" Condition

Example

Say that we have the following recurrence relation:

$$
T(n)=2 T\left(\frac{n}{2}\right)+n \log n
$$

Clearly, $a=2, b=2$ but $f(n)$ is not a polynomial. However,

$$
f(n) \in \Theta(n \log n)
$$

for $k=1$, therefore, by the 4-th case of the Master Theorem we can say that

$$
T(n) \in \Theta\left(n \log ^{2} n\right)
$$

