#### Binding

Jacobsson, Hawes, Kruijff Wyatt

Introduction

The Problem

Motivatior

The Binder

Discussion

### Crossmodal Content Binding in Information-Processing Architectures

### Henrik Jacobsson<sup>1</sup>, Nick Hawes<sup>2</sup>, Geert-Jan Kruijff<sup>1</sup>, Jeremy Wyatt<sup>2</sup>

<sup>1</sup>Language Technology Lab, DFKI GmbH, Germany <sup>2</sup>School of Computer Science, University of Birmingham, UK

Dec 2007, Aveiro, LangRo symposium

### Outline

#### Binding

Jacobsson, Hawes, Kruijff Wyatt

Introduction The Problem Motivation The Binder 1 Introduction

2 The Problem

3 Motivation





### The CoSy Project

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

#### Introduction

The Problem Motivation The Binder Discussion

### EU FP6 IST Cognitive Systems Integrated project Cognitive Systems for Cognitive Assistants - CoSy

The main goal of the project is to advance the science of cognitive systems through a multi-disciplinary investigation of requirements, design options and trade-offs for human-like, autonomous, integrated, physical (eg., robot) systems, including requirements for architectures, for forms of representation, for perceptual mechanisms, for learning, planning, reasoning and motivation, for action and communication

### The CoSy Architecture Schema Toolkit (CAST)

#### Binding

Jacobsson, Hawes, Kruijff Wyatt

#### Introduction

The Problem Motivation

- The Binder
- Discussion

- One of the main focus of the research in CoSy is to investigate the design space of cognitive robotics
- The architecture toolkit aims at making it possible to investigate a range of possible *instances* of architectures
- An architecture consists of several uniformly designed subarchitectures dedicated to vision, planning, communication, mapping etc.
- The main challenge is the integration effort
  - How to communicate between subarchitectures
  - What to communicate between subarchitectures
  - What to do with information from other subarchitectures
  - When to communicate

## **CAST** Example

#### Binding



#### Introduction

The Problem

Motivatior

The Binder

Discussion



## The Binding Problem

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction

The Problem

Motivation

The Binder

- a.k.a. symbol grounding
  - but... "[The binder does] not explicitly deal with reality"
- That will not eliminate all problems:
  - 1 Find a common ground for representing information from different sensory modalities and deliberative processes
  - 2 Find a format that facilitates integration of existing and future implementations of subarchitetures
  - Consider other binding problems than those related to language
  - 4 Robustness against "chaotic" dynamics important

### Requirements

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction

The Problem

Motivation

The Binder

- Appropriate level of abstraction
- 2 Nonintrusive and simple
- 3 Stable symbols
- Asynchronous, anytime, incremental production of bindings

## Requirements

1. Level of abstraction

#### Binding

Jacobsson, Hawes, Kruijff Wyatt

Introduction

The Problem

Motivation

The Binder

- Dilemma: amodal or modal information? Both make sense! So we support both!
- The entities in our scenarios typically involve
  - Objects (and groups of objects)
  - Actions
  - Relations
- We represent these as entities with sets of describing properties, *binding features*
- These entities are called *proxies* (why? hang on)
- The information fusion of crossmodal contents build upon the assumption that subarchitectures have proxies that may refer to the same entity
  - Independent of temporal or spatial frame

### Requirements 2. Nonintrusiveness

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction

The Problem

Motivation

The Binder

Discussion

A subarchitecture only needs to provide:

- Binding feature definitions
- A binding *monitor* component which create appropriate proxies
- Comparators, that compare pairs of features

## Requirements

Nonintrusiveness of Binding Features

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction

The Problem

Motivation

The Binder

- A subarchitecture can have very specialized representations, e.g.
  - visual features
  - spatial representations
  - linguistic modifiers
  - etc.
- The depth of description would be restricted without them
- Translation into common description is costly and lossy
- A binding feature can therefore in principle be *anything* 
  - I.e. anything you can represent in a Java or C++ class
  - If your subarchitecture come across a feature which it doesn't understand, it can only ignore it

### Requirements The Relative Intrusiveness of Binding Monitors

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction

The Problem

Motivation

The Binder

Discussion

The monitors should react to internal data, and make a proper presentations of it in the form of proxies

- Intramodular binding (e.g. discourse referents or spatial reasoning)
- Present the currently best hypothesis about objects, actions and relations (i.e. possibly incrementally)
- Monitors can be context aware (e.g. to withold irrelevant data)
- Monitors should present data that is likely to be relevant to the task... (not so easy)

### Requirements

The Relative Intrusiveness of Comparators

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction

The Problem

Motivation

The Binder

- If a new feature is added, a function which compare that type feature to other comparable types *should* also be added
  - These functions are called *comparators*
  - In current implementation, they should return *true*, *false* or *indeterminate* for every pair of feature instances (brutally simple)
- The result from the comparisons is the basis for the binding score which in turn decides which proxies may in fact refer to the same entity
- Comparators may be based on anything, e.g.
  - hardcoded knowledge (e.g. equivalence testing)
  - ontological reasoning
  - learned mappings
  - context aware agents
  - etc.

### Requirements 3. Stability of Symbols

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction

The Problem

Motivation

The Binder

Discussion

• A proxy is precisely a ... *proxy* for an entity

- A subarchitecture which creates a proxy will use that proxy as an internal symbol for the represented entity
- The proxy is constant w.r.t the subarchitecture
- Based on the binding score, proxies are unified into binding unions
- Unions provide an enriched description of the proxies
- As proxies are added, the existing unions are scored and "compete" to bind
- Unions change frequently, proxies are stable



## The Binder

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction

The Problem

Motivation

The Binder

- The *binder* is a subarchitecture among the others in CAST
- Tasks:
  - Invoke comparators
  - Calculate the binding scores (unions vs. proxies)
  - Create unions
  - Identify disambiguation issues
  - Signal subarchitectures whenever their proxies are bound/rebound
  - Administration...
- The binder does this without a clue about what is represented
- Asynchronous additions and updates of proxies is handled



## Binder

#### Binding

Jacobsson, Hawes, Kruijff Wyatt

Introduction

The Problen

Motivation

The Binder

Discussion





### Binder

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction The Problem Motivation The Binder



### Binder

#### Binding

Jacobsson, Hawes, Kruijff Wyatt

Introduction

The Problen

Motivation

The Binder

Discussion



# Binder

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction The Problem Motivation The Binder



### How We Use/Intend To Use the Binder

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction

The Problem

Motivation

The Binder

Discussion

Primary clients

- Communication
- Planning
- Scenarios
  - Tabletop scenarios
  - Human augmented mapping
  - Incremental processing (subarchitectures can serve as a source of heuristics for each other)
  - Tutoring scenarios

### Some Positive Consequences

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction The Problen

Motivation

The Binder

- Representational freedom
- Disambiguation issues identified
- Comparators are implemented by experts
- Modal and amodal representations side by side
- Subsymbolic representation make varying abstraction possible
- Lazy binding
- Incrementality and asynchronous processing
- Scalable
- Small demands on subarchitectures

### Less Positive Consequences

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction

The Problem

Motivation

The Binder

Discussion

- Information fusion aspect is very limited since the binding score is extremely simple (no fuzzy or Bayesian scoring etc)
  - internally, comparators may be as SOTA as they like, though
- Lack of comparable features can be problematic
- Anything can be a binding feature, not everything should though
- Anyone can propose proxies as they like, but can you trust everyone?
- It's important that subarchitectures are conservative about proposing proxies! (layered binding an option otherwise)

## Future Work

#### Binding

Jacobsson, Hawes, Kruijff, Wyatt

Introduction The Problem

Motivation

The Binder

- Incorporate other approaches to symbol grounding as subcomponents (as comparators or monitors)
- Enrich the binding score to accomodate representations of belief of comparators
- Episodic memory