Crossmodal Content Binding in Information-Processing Architectures

Henrik Jacobsson¹, Nick Hawes², Geert-Jan Kruijff¹, Jeremy Wyatt²

¹Language Technology Lab, DFKI GmbH, Germany
²School of Computer Science, University of Birmingham, UK

Dec 2007, Aveiro, LangRo symposium

Outline

1 Introduction
2 The Problem
3 Motivation
4 The Binder
5 Discussion
EU FP6 IST Cognitive Systems Integrated project
Cognitive Systems for Cognitive Assistants - CoSy

The main goal of the project is to advance the science of cognitive systems through a multi-disciplinary investigation of requirements, design options and trade-offs for human-like, autonomous, integrated, physical (e.g., robot) systems, including requirements for architectures, for forms of representation, for perceptual mechanisms, for learning, planning, reasoning and motivation, for action and communication.

The CoSy Architecture Schema Toolkit (CAST)

- One of the main focus of the research in CoSy is to investigate the design space of cognitive robotics.
- The architecture toolkit aims at making it possible to investigate a range of possible instances of architectures.
- An architecture consists of several uniformly designed subarchitectures dedicated to vision, planning, communication, mapping etc.
- The main challenge is the integration effort:
 - How to communicate between subarchitectures
 - What to communicate between subarchitectures
 - What to do with information from other subarchitectures
 - When to communicate
The Binding Problem

- a.k.a. symbol grounding
 - but... “[The binder does] not explicitly deal with reality”

- That will not eliminate all problems:
 1. Find a common ground for representing information from different sensory modalities and deliberative processes
 2. Find a format that facilitates integration of existing and future implementations of subarchitectures
 3. Consider other binding problems than those related to language
 4. Robustness against “chaotic” dynamics important
Requirements

1. Level of abstraction

- Dilemma: amodal or modal information? Both make sense! So we support both!
- The entities in our scenarios typically involve
 - Objects (and groups of objects)
 - Actions
 - Relations
- We represent these as entities with sets of describing properties, binding features
- These entities are called proxies (why? hang on)
- The information fusion of crossmodal contents build upon the assumption that subarchitectures have proxies that may refer to the same entity
 - Independent of temporal or spatial frame
A subarchitecture only needs to provide:
- Binding feature definitions
- A binding monitor component which create appropriate proxies
- Comparators, that compare pairs of features

A subarchitecture can have very specialized representations, e.g.
- visual features
- spatial representations
- linguistic modifiers
- etc.

The depth of description would be restricted without them

Translation into common description is costly and lossy

A binding feature can therefore in principle be anything
- I.e. anything you can represent in a Java or C++ class
- If your subarchitecture come across a feature which it doesn’t understand, it can only ignore it
The monitors should react to internal data, and make a proper presentations of it in the form of proxies

- Intramodular binding (e.g. discourse referents or spatial reasoning)
- Present the currently best hypothesis about objects, actions and relations (i.e. possibly incrementally)
- Monitors can be context aware (e.g. to withhold irrelevant data)

Monitors should present data that is likely to be relevant to the task... (not so easy)

If a new feature is added, a function which compare that type feature to other comparable types should also be added

- These functions are called comparators
- In current implementation, they should return true, false or indeterminate for every pair of feature instances (brutally simple)

The result from the comparisons is the basis for the binding score which in turn decides which proxies may in fact refer to the same entity

Comparators may be based on anything, e.g.

- hardcoded knowledge (e.g. equivalence testing)
- ontological reasoning
- learned mappings
- context aware agents
- etc.
A proxy is precisely a ... proxy for an entity
- A subarchitecture which creates a proxy will use that proxy as an internal symbol for the represented entity
- The proxy is constant w.r.t the subarchitecture
- Based on the binding score, proxies are unified into binding unions
- Unions provide an enriched description of the proxies
- As proxies are added, the existing unions are scored and “compete” to bind
- Unions change frequently, proxies are stable
The binder is a subarchitecture among the others in CAST

Tasks:
- Invoke comparators
- Calculate the binding scores (unions vs. proxies)
- Create unions
- Identify disambiguation issues
- Signal subarchitectures whenever their proxies are bound/rebound
- Administration...

The binder does this without a clue about what is represented

Asynchronous additions and updates of proxies is handled
Introduction

The Problem

Motivation

The Binder

Discussion

Binder

Subarchitecture A

Subarchitecture B

Subarchitecture C

Comparators

Feature pairs

true/false/?
Introduction
The Problem
Motivation
The Binder
Discussion
How We Use/Intend To Use the Binder

- Primary clients
 - Communication
 - Planning
- Scenarios
 - Tabletop scenarios
 - Human augmented mapping
 - Incremental processing (subarchitectures can serve as a source of heuristics for each other)
 - Tutoring scenarios

Some Positive Consequences

- Representational freedom
- Disambiguation issues identified
- Comparators are implemented by experts
- Modal and amodal representations side by side
- Subsymbolic representation make varying abstraction possible
- Lazy binding
- Incrementality and asynchronous processing
- Scalable
- Small demands on subarchitectures
Less Positive Consequences

- Information fusion aspect is very limited since the binding score is extremely simple (no fuzzy or Bayesian scoring etc)
 - internally, comparators may be as SOTA as they like, though
- Lack of comparable features can be problematic
- Anything can be a binding feature, not everything should though
- Anyone can propose proxies as they like, but can you trust everyone?
- It's important that subarchitectures are conservative about proposing proxies! (layered binding an option otherwise)

Future Work

- Incorporate other approaches to symbol grounding as subcomponents (as comparators or monitors)
- Enrich the binding score to accomodate representations of belief of comparators
- Episodic memory