Information-Processing Architectures for Intelligent Robots: Designs, Tools, Examples and Experiments

Nick Hawes

Intelligent Robotics Lab, School of Computer Science, University of Birmingham

Computer Science Research Colloquium, University of Hertfordshire, 12/12/07

Motivation

The CoSy Architecture Schema

Illustrations

Experiments

Conclusion

Outline

Motivation

The CoSy Architecture Schema

Illustrations

Experiments

Conclusion

Motivation

- 7-site 4-year EU project building robotic systems aiming to demonstrate both state-of-the-art components and systems.
- We are trying to advance of the *science* of *building* intelligent systems: integration is central.
- We see information-processing architectures as central to this problem.

Motivation

The CoSy Architecture Schema

Illustrations

Experiments

Conclusion

What Are Architectures?

- Information-processing structures that circumscribe the functionality of system.
- An understanding of *information-processing architectures* is central to the understanding of intelligent integrated systems.
- They are a useful abstraction for integration (more specific that communication frameworks, more general than particular representations).
- As a design and implementation tool they represent the battleground of science and engineering.

Levels of Description

- We use four different levels of description for architectures:
 - High-level principles and requirements.
 - A schema-level realisation of these.
 - Instantiations of a schema in a concrete design.
 - Implementations of a design in software and hardware.
- These relate to niche space (requirements) and design space (designs) as described by Aaron Sloman and the Birmingham CogAff group.

Motivation

The CoSy Architecture Schema

Illustrations

Experiments

Conclusion

Contributions

Principled approaches for integrating functions (i.e. components and their representations) into a single intelligent robot.

- An architecture schema, combining insights from both robotics and AI/cognitive science, designed to support concurrent processing on shared information.
- An approach to binding information across multiple modalities into a single amodal representation.
- An investigation into filtering in various architecture instantiations.

Some (Selected) Key Problems

- Filtering: How does information flow between a subset of components in an architecture?
- Binding: How can information about the same thing from different components in an architecture be connected?
- Incrementality: How can architectures be easily extended with new capabilities?

Motivation

The CoSy Architecture Schema

Illustrations

Experiments

Conclusion

Outline

Motivation

The CoSy Architecture Schema

Illustrations

Experiments

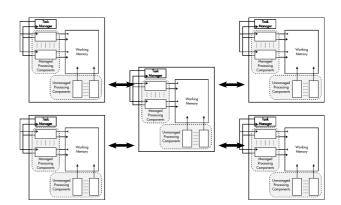
Conclusion

The CoSy Architecture Schema (CAS)

- A schema which defines a limited space of architectures and thus instantiations.
- Based on *requirements* drawn from an analysis of robotic scenarios, and common solutions in implemented systems.
- General enough for experimentation, specific enough to study design commitments.

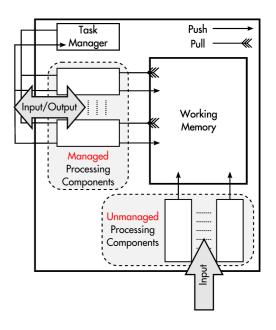
Motivation

The CoSy Architecture Schema


Illustration

Experiments

Conclusion


CAS Key Features

 Collection of loosely coupled subarchitectures.

CAS Key Features

- Collection of loosely coupled subarchitectures.
- Each subarchitecture contains processing components that update structures within a working memory (WM).
- Components can read all WMs but only write to the local WM (bar privileged components).
- Processing is controlled by a network of task managers.

Motivation

The CoSy Architecture Schema

Illustrations

Experiments

Conclusion

CAS in Context

- CAS makes practical use of approaches from cognitive systems.
 - Shared working memories.
 - Management methods for components.
- ... whilst attempting to formalise common practice in robot systems.
 - Multiple concurrent components.
 - Distributed design.
- We are motivated by cognition, although we are not aiming for human-like systems.

CAST: The CAS Toolkit

- 2-layer toolkit: BALT for communication, CAST implements CAS on top.
- Cross language, distributed design, open source, multi-OS. Supports incremental development.
- Biggest system about 30 components running on 5 machines.
- Key contribution: separation of architecture from content.

Motivation

The CoSy Architecture Schema

Illustrations

Experiments

Conclusion

Outline

Motivation

The CoSy Architecture Schema

Illustrations

Experiments

Conclusion

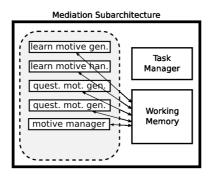
Architectures for Integration

- Over the last two years we have iteratively constructed systems for HRI in a table-top manipulation scenario.
- Each iteration has allowed us to further explore issues in integrated systems, architectures, binding, filtering etc.
- Iterations:
 - 1. Tutor-driven learning of visual properties.
 - 2. Language-driven manipulation.

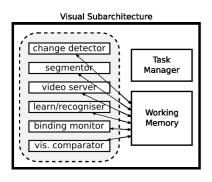
Motivation

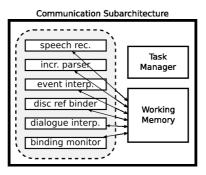
The CoSy Architecture Schema

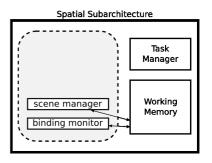
Illustrations


Experiment

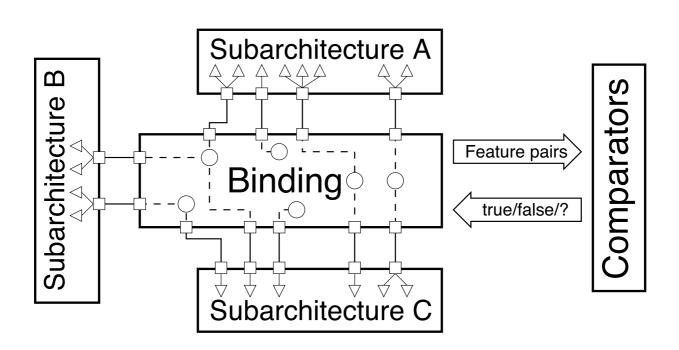

Conclusion


Tutor-Driven Learning of Visual Properties Features

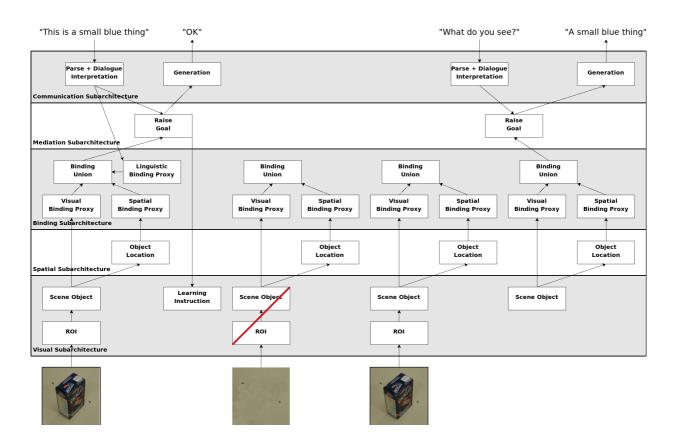

- 2 learning modes:
 - Tutor Driven: Learning task generated via language input.
 - Tutor Supervised: Learning task generated via visual input.
- Spatial WM: Stack of frames of objects in scene, quantitative to qualitative abstraction.
- Mediation: Raises learning goals, posts goals to visual and language SAs.
- Binding SA: Binding linguistic information to visual and spatio-temporal information to generate modality-neutral representations.


Tutor-Driven Learning of Visual Properties Instantiation

Motivation


The CoSy Architecture Schema

Illustrations


Experiments

Conclusion

Tutor-Driven Learning of Visual Properties Binding

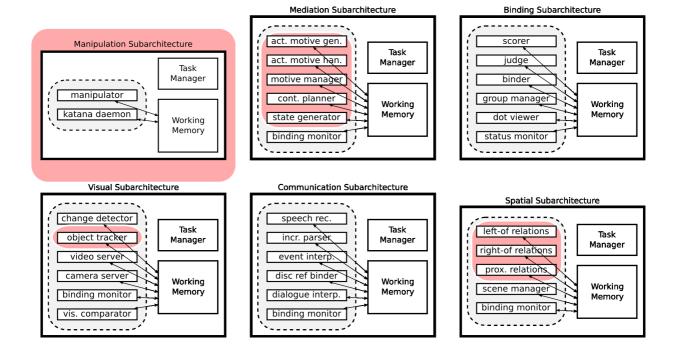
Timeline

Motivation

The CoSy Architecture Schema

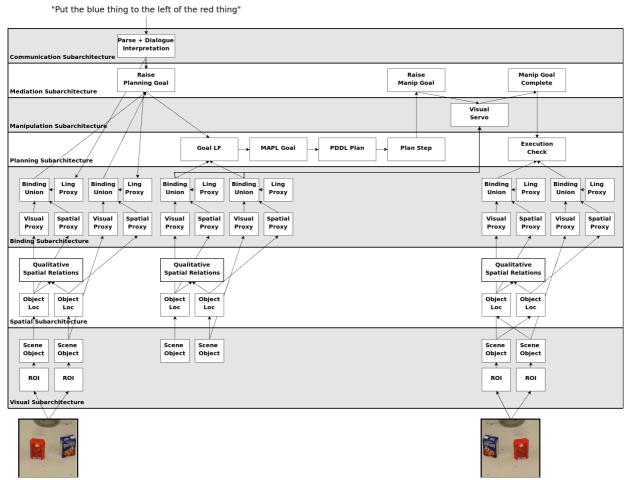
Illustrations

Experiments


Conclusion

Language-Driven Manipulation Features

- Goals are raised by language.
- References are made to objects using previously learned features.
- Robot plans intentional actions using a symbolic planner.
- Intention shifting is handled via execution monitoring and continual planning.
 - Symbolic state generated from binding features at regular intervals.
 - Current state checked against expectations during execution.
 - Feedback from manipulator checked during execution.


Language-Driven Manipulation

Instantiation

Timeline

Outline

Motivation

The CoSy Architecture Schema

Illustrations

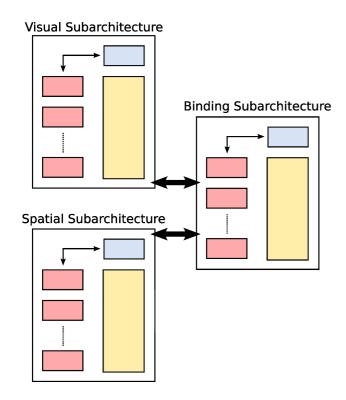
Experiments

Conclusion

Motivation The CoSy Architecture Schema

Illustrations

Experiments

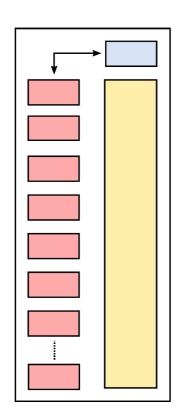

Conclusion

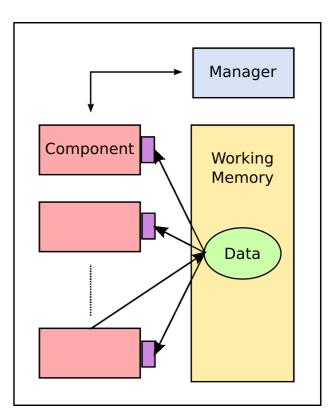
Exploring Design Space

- Given our stated aim of *understanding* systems, building them is not enough.
- Can we use CAST to explore trade-offs in architectural design space?
- Yes!
- Methodology: Build systems that represent different points in design space and measure various properties about them to characterise trade-offs.
- Investigate: Cost of communication and filtering at three points in design space.

Three Schema Instantiations

N components: 1 subarchitecture

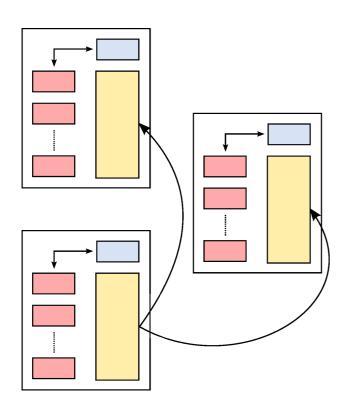


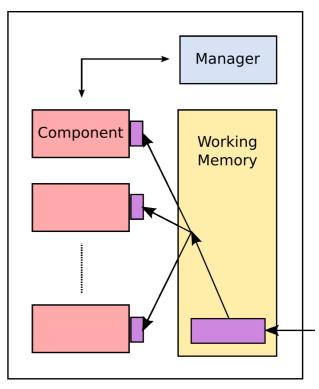


Motivation The CoSy Architecture Schema Illustrations Experiments Conclusion

Three Schema Instantiations

 ${\sf N}$ components : 1 subarchitecture

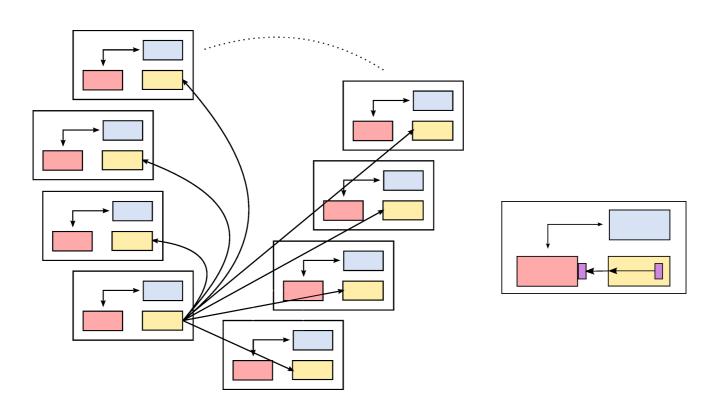




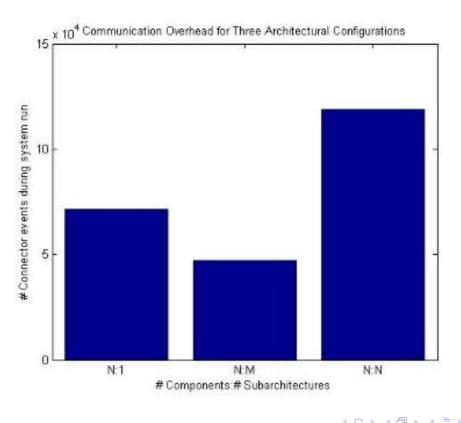
Three Schema Instantiations

N components : M subarchitectures (N > 1)

Motivation The CoSy Architecture Schema

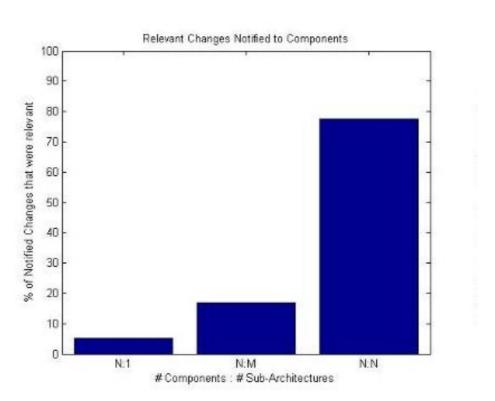

Illustrations

Experiments

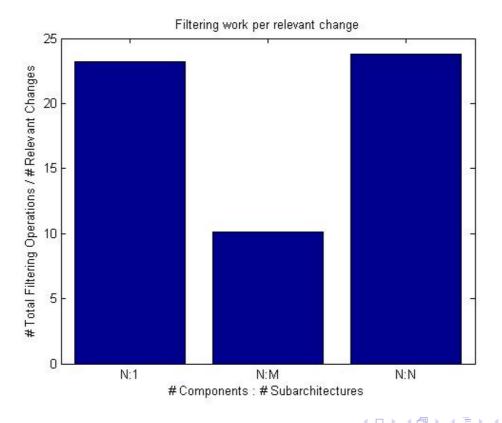

Conclusion

Three Schema Instantiations

N components : N subarchitectures



Results Communication Overhead



Motivation The CoSy Architecture Schema Illustrations Experiments Conclusion

Results Filtering Relevance

Results Filtering Relevance

Motivation The CoSy Architecture Schema Illustrations Experiments Conclusion

Results Summary

- N:M forms a sweet spot in the space of architectures we explored
- Better for:
 - Communication overhead.
 - Filtering work required to identify relevant information
- This is robust with changes in scene complexity and system complexity

Outline

Motivation

The CoSy Architecture Schema

Illustrations

Experiments

Conclusion

Motivation The CoSy Architecture Schema

Illustrations

Experiments

Conclusion

Conclusion

- The CoSy Architecture Schema defines a limited space of possible architectures, allowing us to explore this space in a principled manner.
- A number of CAS instantiations have been implemented for HRI scenarios.
- These instantiations have allowed us to explore approaches to cross-modal binding and aspects of architectural design space.
- All implementations are based on our CAS toolkit. This is available as open source code:

http://www.cs.bham.ac.uk/research/projects/cosy/cast/

Acknowledgements

- Birmingham: Jeremy Wyatt, Aaron Sloman, Michael Zillich, Marek Kopicki, Somboon Hongeng.
- DFKI, Saarbrucken: Henrik Jacobsson, Geert Jan Kruijff, John Kelleher (now at Dublin Inst. Tech).
- Albert-Ludwigs-Universität, Freiburg: Michael Brenner.
- University of Ljubljana: Danijel Skočaj, Gregor Berginc

Motivation

The CoSy Architecture Schema

Illustrations

Experiments

Conclusion

The End

Questions?