

Rezanje črt in
poligonov

World window & viewport

window

viewport

screen window

world window

Clipping

We have talked about 2D scan conversion of
line-segments and polygons

What if endpoints of line segments or
vertices of polygons lie outside the visible
device region?

Need clipping!

Clipping

Clipping of primitives is done usually before scan converting the
primitives

Reasons being
 scan conversion needs to deal only with the clipped version of the

primitive, which might be much smaller than its unclipped version

 Primitives are usually defined in the real world, and their mapping
from the real to the integer domain of the display might result in the
overflowing of the integer values resulting in unnecessary artifacts

Clipping

Clipping: Remove points outside a region of interest.
 Want to discard everything that’s outside of our window...

Point clipping: Remove points outside window.
 A point is either entirely inside the region or not.

Line clipping: Remove portion of line segment outside
window.
 Line segments can straddle the region boundary.

 Liang-Barsky algorithm efficiently clips line segments to a
halfspace.

 Halfspaces can be combined to bound a convex region.

 Use outcodes to better organize combinations of halfspaces.

 Can use some of the ideas in Liang-Barsky to clip points.

Clipping

Lines outside of world window are not to be
drawn.

Graphics API clips them automatically.

But clipping is a general tool in graphics!

Rezanje (clipping)

Cohen-Sutherland

 Uporaba kode za hitro izločanje črt

 Izračun rezanja preostalih črt z oknom gledanja
– Introduced parametric equations of lines to perform

edge/viewport intersection tests

– Truth in advertising, Cohen-Sutherland doesn’t use
parametric equations of lines

 Viewport intersection code:

– (x1, y1), (x2, y2) intersect with vertical edge at xright

– yintersect = y1 + m(xright – x1), m=(y2-y1)/(x2-x1)

– (x1, y1), (x2, y2) intersect with horizontal edge at ybottom

– xintersect = x1 + (ybottom – y1)/m, m=(y2-y1)/(x2-x1)

Parametrične enačbe

Faster line clippers use parametric equations

Line 0:
 x0 = x0

0 + (x0
1 - x0

0) t0

 y0 = y0
0 + (y0

1 - y0
0) t0

Viewport Edge L:
 xL = xL

0 + (xL
1 - xL

0) tL

 yL = yL
0 + (yL

1 - yL
0) tL

x0
0 + (x0

1 - x0
0) t0 = xL

0 + (xL
1 - xL

0) tL

y0
0 + (y0

1 - y0
0) t0 = yL

0 + (yL
1 - yL

0) tL

 Solve for t0 and/or tL

Algoritem Cyrus-Beck

Use parametric equations of lines

Optimize

We saw that this could be expensive…

Start with parametric equation of line:

 P(t) = P0 + (P1 - P0) t

And a point and normal for each edge

 PL, NL

Algoritem Cyrus-Beck

NL [P(t) - PL] = 0

Substitute line equation for P(t)

Solve for t
 t = NL [P0 - PL] / -NL [P1 - P0]

PL

NL

P(t)
Inside

P0

P1

Algoritem Cyrus-Beck

Compute t for line intersection with all four edges

Discard all (t < 0) and (t > 1)

Classify each remaining intersection as

 Potentially Entering (PE)

 Potentially Leaving (PL)

NL [P1 - P0] > 0 implies PL

NL [P1 - P0] < 0 implies PE

 Note that we computed this term in when computing t

Compute PE with largest t

Compute PL with smallest t

Clip to these two points

Algoritem Cyrus-Beck

PE

PL
P1

PL

PE

P0

Algoritem Cyrus-Beck

Because of horizontal and vertical clip lines:

 Many computations reduce

Normals: (-1, 0), (1, 0), (0, -1), (0, 1)

Pick constant points on edges

solution for t:

 -(x0 - xleft) / (x1 - x0)

 (x0 - xright) / -(x1 - x0)

 -(y0 - ybottom) / (y1 - y0)

 (y0 - ytop) / -(y1 - y0)

Cohen-Sutherland region outcodes

4 bits:

 TTFF

Left of window?
Above window?
Right of window?
Below window?

Cohen-Sutherland region outcodes

Trivial accept: both
endpoints are FFFF

Trivial reject: both
endpoints have T in
the same position

FFFF

TTFF

TFFF

FTTFFTFF

TFFT FFTT

FFTF

FFFT

Cohen-Sutherland Algorithm

0

1

2 3

0000

00010101 1001

0100
1000

00100110 1010

(x1, y1)

(x2, y2)

(x2, y1)

(x1, y2)

Half space code (x < x2) | (x > x1) | (y > y1) | (y < y2)

Cohen-Sutherland Algorithm

Computing the code for a point is trivial

 Just use comparison

Trivial rejection is performed using the logical and of
the two endpoints

 A line segment is rejected if any bit of the and result is 1.
Why?

Cohen-Sutherland Algorithm

Now we can efficiently reject lines completely to the left, right,
top, or bottom of the rectangle.

If the line cannot be trivially rejected (what cases?), the line is
split in half at a clip line.

Not that about one half of the line can be rejected trivially

This method is efficient for large or small windows.

Cohen-Sutherland Algorithm

clip (int Ax, int Ay, int Bx, int By)

{

int cA = code(Ax, Ay);

int cB = code(Bx, By);

while (cA | cB) {

if(cA & cB) return; // rejected

if(cA) {

update Ax, Ay to the clip line depending

 on which outer region the point is in

cA = code(Ax, Ay);

} else {

update Bx, By to the clip line depending

 on which outer region the point is in

cB = code(Bx, By);

}

}

drawLine(Ax, Ay, Bx, By);

}

Cohen-Sutherland: chopping

If segment is neither trivial accept or reject:

 Clip against edges of window in turn

Cohen-Sutherland: chopping

Trivial accept

Cohen-Sutherland line clipper

int clipSegment (point p1, point p2)

Do {

If (trivial accept) return (1)

If (trivial reject) return (0)

If (p1 is outside)

if (p1 is left) chop left

else if (p1 is right) chop right

…

If (p2 is outside)

…

} while (1)

Cohen-Sutherland clipping

Trivial accept/reject test!

Trivial rejectTrivial accept

Demo

Trivially accept or trivially reject
• 0000 for both endpoints = accept
• matching 1’s in any position for both endpoints =
reject

P1

P1
P1

P1

P1

P2

P2

P2

P2

P2

Calculate clipped endpoints

P0: Clip left
x = xmin
y = y0 + [(y1-y0)/(x1-x0)] *(xmin-x0)

y = y0 + slope*(x-x0) x = x0 +(1/ slope)*(y-y0)

P0

P1

P1: Clip top
y = ymax
x = x0 + [(x1-x0)/(y1-y0)]*(ymax-y0)

Comparison

Cohen-Sutherland

 Repeated clipping is expensive

 Best used when trivial acceptance and rejection is possible
for most lines

Cyrus-Beck

 Computation of t-intersections is cheap

 Computation of (x,y) clip points is only done once

 Algorithm doesn’t consider trivial accepts/rejects

 Best when many lines must be clipped

Liang-Barsky: Optimized Cyrus-Beck

Nicholl et al.: Fastest, but doesn’t do 3D

Clipping Polygons

Clipping polygons is more complex than
clipping the individual lines

 Input: polygon

 Output: original polygon, new polygon, or nothing

When can we trivially accept/reject a polygon
as opposed to the line segments that make
up the polygon?

What happens to a triangle during clipping?

Possible outcomes:

triangle� triangle

Why Is Clipping Hard?

triangle� quad triangle� 5-gon

How many sides can a clipped triangle have?

A really tough case:

Why Is Clipping Hard?

A really tough case:

Why Is Clipping Hard?

concave polygon� multiple polygons

Sutherland-Hodgeman Clipping

Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

Sutherland-Hodgeman Clipping

Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

Sutherland-Hodgeman Clipping

Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

Sutherland-Hodgeman Clipping

Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

Sutherland-Hodgeman Clipping

Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

Sutherland-Hodgeman Clipping

Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

Sutherland-Hodgeman Clipping

Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

Sutherland-Hodgeman Clipping

Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

Sutherland-Hodgeman Clipping

Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

Sutherland-Hodgeman Clipping: The Algorithm

Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

Sutherland-Hodgeman Clipping

Input/output for algorithm:

 Input: list of polygon vertices in order

 Output: list of clipped poygon vertices consisting of
old vertices (maybe) and new vertices (maybe)

Note: this is exactly what we expect from the
clipping operation against each edge

Sutherland-Hodgeman Clipping

Sutherland-Hodgman basic routine:

 Go around polygon one vertex at a time

 Current vertex has position p

 Previous vertex had position s, and it has been
added to the output if appropriate

Sutherland-Hodgeman Clipping

Edge from s to p takes one of four cases:
(Purple line can be a line or a plane)

inside outside

s

p

p output

inside outside

s

p

no output

inside outside

s
p

i output

inside outside

sp

i output
p output

Sutherland-Hodgeman Clipping

Four cases:
 s inside plane and p inside plane

– Add p to output

– Note: s has already been added

 s inside plane and p outside plane
– Find intersection point i

– Add i to output

 s outside plane and p outside plane
– Add nothing

 s outside plane and p inside plane
– Find intersection point i

– Add i to output, followed by p

Point-to-Plane test

A very general test to determine if a point p is “inside” a
plane P, defined by q and n:

(p - q) • n < 0: p inside P

(p - q) • n = 0: p on P

(p - q) • n > 0: p outside P

Remember: p • n = |p| |n| cos (θ)

θ = angle between p and n

P

n
p

q

P

n
p

q

P

n
p

q

Finding Line-Plane Intersections

Use parametric definition of edge:

L(t) = L0 + (L1 - L0)t

 If t = 0 then L(t) = L0

 If t = 1 then L(t) = L1

 Otherwise, L(t) is part way from L0 to L1

Finding Line-Plane Intersections

Edge intersects plane P where E(t) is on P

 q is a point on P

 n is normal to P

(L(t) - q) • n = 0

t = [(q - L0) • n] / [(L1 - L0) • n]

 The intersection point i = L(t) for this value of t

Line-Plane Intersections

Note that the length of n doesn’t affect result:

Again, lots of opportunity for optimization

An Example with a non-convex polygon

	Rezanje črt in poligonov
	World window & viewport
	Clipping
	Slide 4
	Slide 5
	Slide 6
	Rezanje (clipping)
	Parametrične enačbe
	Algoritem Cyrus-Beck
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Cohen-Sutherland region outcodes
	Slide 15
	Cohen-Sutherland Algorithm
	Slide 17
	Slide 18
	Slide 19
	Cohen-Sutherland: chopping
	Slide 21
	Cohen-Sutherland line clipper
	Cohen-Sutherland clipping
	Slide 24
	Slide 25
	Comparison
	Clipping Polygons
	Why Is Clipping Hard?
	Slide 29
	Slide 30
	Sutherland-Hodgeman Clipping
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Sutherland-Hodgeman Clipping: The Algorithm
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Point-to-Plane test
	Finding Line-Plane Intersections
	Slide 47
	Line-Plane Intersections
	An Example with a non-convex polygon

