3D rezanje 3D Clipping
view frustrum

clipped

3D Projections and Clipping

- Projections (Concluded)
- Parallel projection: cuboid view volume
- Perspective projection: truncated pyramidal view volume (frustum)
- Problem: how to clip?
- Clipping
- Given: coordinates for primitives (line segments, polygons, circles, ellipses, etc.)
- Determine: visible components of primitives (e.g., line segments)
- Methods
- Solving simultaneous equations (quick rejection: testing endpoints)
- Solving parametric equations
- Objectives: efficiency (e.g., fewer floating point operations)
- Clipping in 3D
- Some 2D algorithms extendible to 3D
- Specification (and implementation) of view volumes needed

Paralelni kuboid in View volume

3D Clipping

- For orthographic projection, view volume is a box.
- For perspective projection, view volume is a frustrum.

3D obrezovanje poligonov

It is sufficient to clip each polygon against the view pyramid.

Far
Plane

Canonical View Volume

- Can use Cohen-Sutherland algorithm.
- Now 6-bit outcode.
- Trivial acceptance where both endpoint outcodes are all zero.
- Perform logical AND, reject if non-zero.
- Find intersect with a bounding plane and add the two new lines to the line queue.
- Line-primitive algorithm.
- Sutherland-Hodgman extends easily to 3D.
- Call ‘CLIP' procedure 6 times rather than 4
- Polygon-primitive algorithm.

Sutherland-Hodgman Algorithm

Four cases of polygon clipping :

Clipping and Homogeneous Coordinates

- Efficient to transform frustrum into perspective canonical view volume - unit slope planes.
- Even better to transform to parallel canonical view volume
- Clipping must be done in homogeneous coordinates.
- Points can appear with -ve W and cannot be clipped properly in 3D.

Why Clip Against Near and Far?

Clipping Against Pyramid Sides

Let l, r, b, t be the points where the sides of the view pyramid intersect the view plane. Let d. be the distance from the origin to the view point. Then

$$
\begin{array}{ll}
\text { slope of the left plane: } & s_{L}=-1 / 2(r-l) / d \\
\text { slope of the right plane: } & s_{R}=1 / 2(r-l) / d \\
\text { slope of the bottom plane: } & s_{B}=-1 / 2(t-b) / d \\
\text { slope of the top plane: } & s_{T}=1 / 2(t-b) / d
\end{array}
$$

Equations of the Sides of the View Pyramid

$$
\begin{array}{ll}
L: & x=l+s_{L} z \\
R: & x=r+s_{R} z \\
B: & y=b+s_{B} z \\
T: & y=t+s_{T} z \\
N: & z=n \\
F: & z=f
\end{array}
$$

A line from $\left(x_{1}, y_{1}, z_{1}\right)$ to $\left(x_{2}, y_{2}, z_{2}\right)$ intersects the top plane at u value

$$
u_{T}=\frac{y_{1}-t-s_{T} z_{1}}{y_{1}-y_{2}+s_{T}\left(z_{2}-z_{1}\right)}
$$

so we compute the (x, y, z) point of intersection as

$$
x=x_{1}+u_{T}\left(x_{2}-x_{1}\right) \quad y=y_{1}+u_{T}\left(y_{2}-y_{1}\right) \quad z=z_{1}+u_{T}\left(z_{2}-z_{1}\right)
$$

3D Clipping Pipeline

The code is exactly analogous to the 2D pipeline with two more clippers: N (near) and F (far).

3D Clipping Pipeline (2)

Front View

3D Clipping Pipeline (3)

Top View

3D Clipping Pipeline (4)

First iteration:

O												
P_{1}	L	P_{1}	R	P_{1}	B	P_{1}	T	a	N	a	F	a
P_{2}	L	P_{2}	R	P_{2}	B	P_{2}	T					
P_{3}	L	P_{3}	R	b	B	b	T	c	N	c	F	d
								b	N	b	F	

Second Iteration:

| P_{3} | | P_{3} | | b | | b | | b | | b | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P_{1} | L | P_{1} | R | e | B | e | T | f | N | f | F | g |
| | | | | | | | | | | | | f |
| | | | | P_{1} | B | P_{1} | T | | | | | |
| P_{2} | L | P_{2} | R | P_{2} | B | P_{2} | T | | | | | |
| P_{3} | L | P_{3} | R | b | B | b | T | c | N | c | F | h |
| | | | | | | | | b | N | b | F | |

