3D rezanje 3D Clipping

3D Projections and Clipping

- Projections (Concluded)
 - Parallel projection: cuboid view volume
 - Perspective projection: truncated pyramidal view volume (frustum)
 - Problem: how to <u>clip</u>?
- Clipping
 - Given: coordinates for primitives (line segments, polygons, circles, ellipses, etc.)
 - Determine: visible components of primitives (e.g., line segments)
 - Methods
 - Solving simultaneous equations (quick rejection: testing endpoints)
 - Solving parametric equations
 - Objectives: efficiency (e.g., fewer floating point operations)
- Clipping in 3D
 - Some 2D algorithms extendible to 3D
 - Specification (and implementation) of view volumes needed

Paralelni kuboid in View volume

3D Clipping

- For orthographic projection, view volume is a box.
- For perspective projection, view volume is a *frustrum*.

3D obrezovanje poligonov

It is sufficient to clip each polygon against the view pyramid.

Canonical View Volume Y axis +1Back y = -zClipping Front Plane Clipping z=-1 Plane -Z -1 3-D Extension of 2-D Cohen-Sutherland Algorithm, Outcode of six bits. A bit is true (1) y=zwhen the appropriate condition is satisfied -1 Bit 1 - Point is above view volume y > -z Bit 2 - Point is below view volume **y** < **z** Bit 3 - Point is right of view volume x > -z Bit 4 - Point is left of view volume x < z Bit 5 - Point is behind view volume z < -1 Bit 6 - Point is in front of view volume z > zmin

3D Clipping

- Can use Cohen-Sutherland algorithm.
 - Now 6-bit outcode.
 - Trivial acceptance where both endpoint outcodes are all zero.
 - Perform logical AND, reject if non-zero.
 - Find intersect with a bounding plane and add the two new lines to the line queue.
 - Line-primitive algorithm.

3D Polygon Clipping

- Sutherland-Hodgman extends easily to 3D.
- Call 'CLIP' procedure 6 times rather than 4
- Polygon-primitive algorithm.

Sutherland-Hodgman Algorithm

Four cases of polygon clipping :

Clipping and Homogeneous Coordinates

- Efficient to transform frustrum into perspective canonical view volume – unit slope planes.
- Even better to transform to parallel canonical view volume
 - Clipping must be done in homogeneous coordinates.
- Points can appear with –ve W and cannot be clipped properly in 3D.

Why Clip Against Near and Far?

Clipping Against Pyramid Sides

Let l, r, b, t be the points where the sides of the view pyramid intersect the view plane. Let d be the distance from the origin to the view point. Then

slope of the left plane: slope of the right plane: slope of the bottom plane: slope of the top plane:

$$\begin{split} s_L &= -1/2(r-l)/d \\ s_R &= 1/2(r-l)/d \\ s_B &= -1/2(t-b)/d \\ s_T &= 1/2(t-b)/d \end{split}$$

Equations of the Sides of the View Pyramid

$$L: \qquad x = l + s_L z$$
$$R: \qquad x = r + s_R z$$
$$B: \qquad y = b + s_B z$$
$$T: \qquad y = t + s_T z$$
$$N: \qquad z = n$$
$$F: \qquad z = f$$

A line from (x_1, y_1, z_1) to (x_2, y_2, z_2) intersects the top plane at u value

$$u_T = \frac{y_1 - t - s_T z_1}{y_1 - y_2 + s_T (z_2 - z_1)}$$

so we compute the (x, y, z) point of intersection as

$$x = x_1 + u_T(x_2 - x_1)$$
 $y = y_1 + u_T(y_2 - y_1)$ $z = z_1 + u_T(z_2 - z_1)$

3D Clipping Pipeline

The code is exactly analogous to the 2D pipeline with two more clippers: N (near) and F (far).

3D Clipping Pipeline (2)

Front View

3D Clipping Pipeline (3)

Top View

3D Clipping Pipeline (4)

First iteration:

O_{-}		O		O		O		O		O		
P_1	L	P_1	R	P_1	B	P_1	T	a	N	a	F	a
P_2	L	P_2	R	P_2	B	P_2	T					
P_3	L	P_3	R	b	B	b	T	c	N	c	F	d
								b	N	b	F	
Seco	nd Itera	ation:										
P_3		P_3		Ь		b		b		b		
P_1	L	P_1	R	e	B	e	T	f	N	f	F	g
												f
				P_1	B	P_1	T					
P_2	L	P_2	R	P_2	B	P_2	T					
P_3	L	P_3	R	b	B	b	T	c	N	c	F	h
								b	N	b	F	