Cloth animation

Demo >

‘What is cloth?

® 2 basic types: woven and knit
® We'll restrict to woven

® Warp vs. weft

b twill C) sabm

Figure 1.8. The weaving process.

Cloth modeling basics

e In general, cloth resists motion in 4 directions:

. j

Ir

In-plane In-plane In-plane shear Out-of-plane
stretch compression (trellising) bending

A basic mass-spring model

e Simple spring-mass system due to Provot [1995]

® You already know how to implement this

Bend spring Shear spring Stretch spring

\

Basic problem: when we push on a piece of cloth like

this,
-—_— T

we expect to see this:

A

But, in our basic particle system model, we have to
make the compression forces very stiff to get
significant out-of-plane motion. This is expensive.

1.

POV e et VO

‘Stiffness in ODEs - example hﬁ%

Consider the following ODE:

“dx
— =—kx, E31
-
The analytical solution is
.-.r['f.'] — Cek

If we solve it with Euler’s method,
. Ligp = Iy — .lil?.f!fi'f’f = I:]. — .lil'.i'.ftu.f:]i'l.”f

What happens when hk > 12 | i \A¥
Barely stable \/ Unstable

%

' Stiffness in cloth hﬁ%

® |n general, cloth stretches little if at all in the plane

® To counter this, we generally have large in-plane
stretch forces (otherwise the cloth looks “wiggly”)

® The result: stiffness!

'Avoiding stiffness

An alternative approach is to avoid stiffness
altogether by applying only non-stiff spring forces and
then “fixing” the solution at the end of the timestep.

(Provot [1995], Desbrun et al [1999], Bridson et al
[2002])

We can do this with impulses and Jacobi iteration.
N "y
N
2. %
T
= 2
Iteration 1 Iteration 2 Iteration 3 (converged)

' Particle-based methods

® Breen [1992]: energy-based model

| U’i — Ufﬂp&h + Ustretdu + Ubﬁﬂd{ + Utreﬂi.s.;
® Find final draping position by minimizing the total
energy in the cloth

e NOT dynamic! - —:g f H’"A""—'ﬂ‘l

Note: You could convert this _/I
to a “normal” particle system JgEJ
model by differentiating S
energy w.r.t. position,
F=-V,U

Figzure 3: Cloth model encrgy functions

Collision Detection

« Numerical Complexity

~ Arises from the high
number of polygons that
the object meshes have
(cloth and body, several
thousands of polygons),
and how to extract the
colliding polygons quickly.

Collision detection

® We already covered this for deformable bodies

® Many of the same methods work, especially
acceleration methods

® Generally need to do triangle-triangle collision
checks:

Edge-edge collision Point-face collision

Robust collision detection 4§

If triangles are moving too fast, they may pass through
each other in a single timestep.

We can prevent this by checking for any collisions
during the timestep (Provot [1997])

Note first that both point-face and edge-edge
collisions occur when the appropriate 4 points are
coplanar

'Robust collision detection (2) {g

Detecting time of coplanarity - assume linear velocity

throughout timestep:
. {Ilg + h"]_g) * {Ila + h"la}

So the problem reduces to finding roots of the cubic

equation
({Iﬂ + W]g} b4 {}[13 + fivm}) . {}[14 + hfu}

Once we have these roots, we can plug back in and
test for triangle adjacency.

Collision response

@ 4 basic options:

® (Constraint-based

® Penalty forces Q
® Impulse-based
. '

Rigid body dynamics (will explain)

Constraint-based response

® Assume totally inelastic collision

® Constrain particle to lie on triangle surface

® Benefits:
® Fast, may not add stiffness (e.g., Baraff/Witkin)
® No extra damping needed

® Drawbacks
® Only supports point-face collisions

® (Constraint attachment, release add
discontinuities (constants hard to get right)

® Doesn’t handle self-collisions (generally)

® Conclusion:a good place to start, but not robust
enough for heavy-duty work

' Penalty forces 4§

® Apply a spring force that keeps particles away from
each other

® Benefits:
® Easy to fit into an existing simulator

® Works with all kinds of collisions (use
barycentric coordinates to distribute responses

among vertices)
® Drawbacks:

® Hard to tune: if force is too weak, it will
sometimes fail; if force is too strong, it will cause
the particles to “float” and “wiggle”

Impulses

® “Instantaneous” change in momentum
' !
J= f Fdt=py—pi
1y

® Generally applied outside the simulator timestep
e Benefits

e Correctly stops all collisions (no sloppy spring
forces)

® Drawbacks
® Can have poor numerical performance
® Handles persistent contact poorly

' Impulses (2)

Iteration is generally necessary to remove all
collisions.

€ €«

Imitial state Apply Impulsa responsas Intarmediate state

¢ 4

Apply Impulsa responsas Final state

Rigid collision impact zones <§

® Basic idea:if a group of particles start timestep
collision-free, and move as a rigid body throughout
the timestep, then they will end timestep collision-

free. center
of mass g

® We can group particles involved in a collision

together and move them as a rigid body (Provot
[1997] -- error?, Bridson [2002])

o

-T-‘.:-'H=E1 T-'t:-'!!':z‘m‘ : Center of mass frame
_ my m;
L= Z '.l'l'l.ilz::I'I::1 —}[c,-y} b4 ["-"1- —_ "-"{;rg} Momenbumn

i

1 =Zm{|xi—xcu|“ﬁ— (i —xeu) ® (i — Xou)) inertia tensor

‘w=I"L Angular velocity

vi = voum +w % (% — xom) Final velocity

' Rigid collision impact zones (2) ég

® Note that this is totally failsafe |

® We will need to iterate,and merge impact zones
as we do (e.g. until the impact zone includes all
colliding particles) emer &

® This is best used as a last resort, because rigid)
body cloth can be unappealing.

Combining methods

® So we have:
® penalty forces - not robust, not intrusive (i.e.,
integrates with solver)

® impulses - robust (esp. with iteration), intrusive -
but may not converge

e rigid impact zones - completely robust, _
guaranteed convergence, but very intrusive “

Solution? Use all three! (Bridson et al [2002])

.Combining methods (2)

Basic methodology (Bridson et al [2002]):
|. Apply penalty forces (implicitly)
2. While there are collisions left
|. Check robustly for collisions
2. Apply impulses
3. After several iterations of this, start grouping
particles into rigid impact zones

4,

Objective: guaranteed convergence with minimal
interference with cloth internal dynamics

Collision Detection

Mastering Complexity
The Problematic

~ High number of objects.

~ High number of object elements.

» Detecting geometrical interferences
between numerous object elements
efficiently needs advanced algorithms.

~ Awvoiding O(n*) complexity.

Collision Detection

Mastering Complexity
Algorithms

+ Space Subdivision Techniques
~ Voxelisation
~ Space Hierarchies (Octree)

« Object Subdivision Techniques
~ Object Hierarchies

+ Proximity Techniques

~ Voronoi Domains
~ Projection & Ordering

Collision Detection

Voxel Space Subdivision

« The space is subdivided into

P B i
an array of voxels. 1
* Detection only between =3
» » I e
objects sharing common L5 |o

[
|

voxels, [

L]

Collision Detectiol

Octree Space Subdivision

= o[
M= Bl F

* The space is recursively subdivided into a structure
representing the shape of each objects.

* Detection by exploring the stucture.

Collision Detection

Bounding-Box Hierarchy

@

E;"
.,)

» The objects are grouped in a hierarchy
according to proximity rules.

» Detection by exploring bounding-box
intersections in the hierarchy.

Collision Detection

Proximity Tracking

+ Keeping incremental information
on the objects neighborhood relations.

*+ Ex: Voronoy domains, convex hull,...

Collision Detection

Incremental Techniques
« For animations, updating the collisions as the objects move
between each frame.

« A good way to speed up computation for frame-based
animations.

« Difficulty to maintain the consistency of all collisions.

Collision Detection

Collisions & Self-Collisions

» Self-Collisions: Detecting collisions
between the primitives of one object.

* The adjacency problem:
Adjacent primitives are “colliding”
according to usual detection algorithms.

* How to maintain the algorithm efficiency?

Collision Detection

Efficient Self-Collision Detection

» Curvature Optimization
~ No self-collisions witlin an almost flat surface.

< |

~ Self-collision detection only
w:ﬂ:m surface regions ﬁmt are
curved enough to contain some.

Collision Detection

Efficient Self-Collision Detection

e Curvature Optimizatinn

~ Combining bounding-box and curvature fests.

Self-Collisions Inter-Collisions
of’_"\ (Non-Adjacent)
Nao Detection Within L/,?ﬁ
Daetaction Within \J

Inter-Collisions Detection Between
‘ (Adjacent)

L S

Detection Betwesn No Detection Behween No Detection Between

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

