

Detekcija trkov

Pomen detekcije trkov

 Especially important in Interactive Virtual Environments.

 No matter how good the VE look, the poor realism
resulting from a lack of collision detection.

 However, there may be hundreds, even thousands of
objects in the virtual world.

Pomen detekcije trkov

Uvod

Kaj je odkrivanje trkov?

 Entities occupy, partially or fully, the same location at
the same time.

 We term the above scenario a collision.
 Collision leads to event(s) in most cases –

– Bullet hitting a box of grenades causing the event of
explosion and possibly other events (e.g., reduction of life
force for players stood near the grenades at time of
explosion).

 However, this is not the full story –
– Ideally we should foresee collision as immanent and time

our event to occur at a deterministic point in time (true
collision).

– Q: How is this achieved while still maintaining performance?
– A: With great difficulty when performance permits.

Trki

Odkrivanje trkov

 Essential for many games
 Shooting
 Kicking, punching, beating, whacking, smashing,

hitting, chopping, dicing, slicing, julienne fries…
 Car crashes

 Expensive
 tests!!

)(2NO

Demo

Problem N teles

Različne vrste teles, ki trkajo

Uporaba odkrivanja trkov

 Determining if the player or character has a hit a wall or
obstacle
 To stop them walking through it

 Determining if a projectile (missile) has hit a target

 Detecting points at which behavior should change
 A car in the air returning to the ground

 Cleaning up animation
 Making sure a character’s feet do not pass through the floor

 Simulating motion of some form
 E.g. cloth, or something else

Odkrivanje trkov

 Collision detection, as used in the games community,
usually means intersection detection of any form

 Intersection detection is the general problem: find out if two
geometric entities intersect – typically a static problem

 Interference detection is the term used in the solid modeling
literature – typically a static problem

 Collision detection in the research literature generally refers to a
dynamic problem – find out if and when moving objects collide

 Subtle point: Collision detection is about the algorithms
for finding collisions in time as much as space

Terminologija

Convex Concave

An object is convex if for
every pair of points inside
the object, the line joining
them is also inside the
object

Manifold Non-Manifold

An surface is manifold if every
point on it is homeomorphic to a
disk.
Roughly, every edge has two
faces joining it

Izbira algoritma

 The geometry of the colliding objects is the primary factor in
choosing a collision detection algorithm
– “Object” could be a point, or line segment

– Object could be specific shape: a sphere, a triangle, a cube, …

– Objects can be concave/convex, solid/hollow, deformable/rigid

 The way in which objects move is a second factor
– Different algorithms for fast or slow moving objects

– Different algorithms depending on how frequently the object must be
updated

 Of course, speed, simplicity, robustness are all other factors

Strategije odkrivanja trkov

 There are several principles that should be
considered when designing a collision detection
strategy

 What might they be?
– Say you have more than one test available, with

different costs. How do you combine them?

– How do you avoid unnecessary tests?
– How do you make tests cheaper?

Strategije odkrivanja trkov

 There are several principles that should be considered when
designing a collision detection strategy

 Fast simple tests first to eliminate many potential collisions

– e.g.: Test bounding volumes before testing individual triangles

 Exploit locality to eliminate many potential collisions

– e.g.: Use cell structures to avoid considering distant objects

 Use as much information as possible about the geometry

– e.g.: Spheres have special properties that speed collision testing

 Exploit coherence between successive tests

– Things don’t typically change much between two frames

Robustnost

 For our purposes, collision detection code is robust if it:

– Doesn’t crash or infinite loop on any case that might occur

• Better if it doesn’t crash on any case at all, even if the case is
supposed to be “impossible”

– Always gives some answer that is meaningful, or explicitly
reports that it cannot give an answer

– Can handle many forms of geometry

– Can detect problems with the input geometry, particularly if that
geometry is supposed to meet some conditions (such as
convexity)

 Robustness is remarkably hard to obtain

Odkrivanje trkov

 Efficiency hacks/cheats
– Fewer tests: Exploit spatial coherence

• Use bounding boxes/spheres

• Hierarchies of bounding boxes/spheres

Tipi geometrije

 Points
 Lines, Rays and Line Segments
 Spheres, Cylinders and Cones
 Cubes, rectilinear boxes - Axis aligned or arbitrarily aligned

– AABB: Axis aligned bounding box
– OBB: Oriented bounding box

 k-dops – shapes bounded by planes at fixed orientations
 Convex, manifold meshes – any mesh can be triangulated

– Concave meshes can be broken into convex chunks, by hand

 Triangle soup
 More general curved surfaces, but not used (often) in games

8-dop

AABB

OBB

Collision Detection using Bounding Spheres (Boxes)

 If the bounding spheres (boxes) of two objects don’t
intersect, there is no collision between the two object.
– How to determine the intersection between spheres / boxes?

 If the bounding volumes intersect, there may be collision
between the objects.
– However, there may still be no collision.

– Tight bounds performs better. We may treat two objects collided
if the bounds are tight and intersect.

 Not every object has a good bounding sphere (box), e.g.
planes.

Primeri obsegajočih volumnov

Primeri obsegajočih volumnov

Obsegajoča krogla in kvader

 Bounding sphere: the minimum sphere enclosing the
object.
– You may need to find the center of the object and the radius of

the sphere. (can be done in the modeling phase)

– Not accurate in may cases. But can be used as initial test before
applying more complicated algorithms.

– Not a good fit for narrow or long objects

 Bounding box (axis-aligned): the minimum and maximum
coordinates of the object in x, y, z directions
– Not transform-invariant. Need to be recomputed after a

transformation, e.g. rotation.

– Can fit odd shaped objects better

Obsegajoči kvader (bounding box)

 Place a box around an object
– Box should completely enclose the object and be of

minimal volume
– Fairly simple to construct

 Test intersections between the boxes to find
intersections

 Each box has 6 faces (planes) in 3D
– Simple algebra to test for intersections between

planes
– If one of the planes intersects another, the objects are

said to collide

Obsegajoči kvader

 Space complexity
– Each object must store 8 points representing the

bounding box
– Therefore, space is O(8) and Ω(8)

 Time complexity
– Each face of each object must be tested against each

face of each other object
– Therefore, O((6n)2) = O(n2)

• n is the number of objects

Obsegajoči kvader

 Pro
– Very easy to implement

– Very little extra space needed

 Con
– Very coarse detection

– Very slow with many objects in the scene

Obsegajoče krogle (Bounding Spheres)

 Similar to bounding boxes, but instead we
use spheres
– Must decide on a “center” point for the object

that minimizes the radius
– Can be tough to find such a sphere that

minimizes in all directions
– Spheres could leave a lot of extra space

around the object!

Obsegajoče krogle

 Each sphere has a center point and a
radius
– Can build an equation for the circle
– Simple algebra to test for intersection

between the two circles

Obsegajoče krogle

 Space complexity
– Each object must store 2 values - center and radius -

to represent the sphere
– Therefore, space is O(2) and Ω(2)
– Space is slightly less than bounding boxes

 Time complexity
– Each object must test it’s bounding sphere for

intersection with each other bounding sphere in the
scene

– Therefore, O(n2)
• n is the number of objects

– Significantly fewer calculations than bounding boxes!

Obsegajoče krogle

 Pro
– Even easier to implement (than bounding boxes)
– Even less space needed (than bounding boxes)

 Con
– Still fairly coarse detection
– Still fairly slow with many objects

Poravnani obsegajoči kvadri (Aligned Bounding Boxes)

 Axis-aligned vs. Object-aligned

 Axis-aligned BBox change as object
moves

 Approximate by rotating BBox
Swept volume

Oriented Bounding Boxes (OBBs)

 These are more difficult to implement and result in greater effort
to achieve collision detection. However, the collision detection is
more accurate than AABBs.

 Furthermore, because the OBBs are expected to “fit” more
tightly around an entity the tree structure is expected to be much
reduced over that of AABBs.

 Checking for OBBs that are collided means ensuring that no
separating axis exist (same as AABBs). However, in 3D there
are 15 potential axes. Furthermore, the axes do not lie trivially
on regular planes (X, Y, Z) but must be deduced from the
orientation of the OBBs involved.
– Handling OBBs in three dimensions are beyond the scope of this

course.
– AABBs are adequate for our purposes.

Hierarhije obsegajočih volumnov

Izgradnja hierarhije

Hierarhije za trdna telesa

Optimization Structures

 BV, BVH (bounding volume hierarchies)
 Octree
 KD tree
 BSP (binary separating planes)
 OBB tree (oriented bounding boxes- a popular

form of BVH)
 K-dop
 Uniform grid

Testing BVH’s

TestBVH(A,B) {
if(not overlap(ABV, BBV) return FALSE;

else if(isLeaf(A)) {
if(isLeaf(B)) {
 for each triangle pair (Ta,Tb)

if(overlap(Ta,Tb)) AddIntersectionToList();

}
else {
 for each child Cb of B

TestBVH(A,Cb);

}
}
else {

for each child Ca of A

 TestBVH(Ca,B)

}
}

Bounding Volume Hierarchies

Octrees

KD Trees

BSP Trees

OBB Trees

K-Dops

Uniform Grids

BSP Trees

 BSP (Binary Space Partitioning) trees are
used to break a 3D object into pieces for
easier comparison
– Object is recursively broken into pieces and

pieces are inserted into the tree
– Intersection between pieces of two object’s

spaces is tested

BSP Trees

 We refine our BSP trees by recursively defining
the children to contain a subset of the objects of
the parent
– Stop refining on one of a few cases:

• Case 1: We have reached a minimum physical size for the
section (ie: one pixel, ten pixels, etc)

• Case 2: We have reached a maximum tree depth (ie: 6
levels, 10 levels, etc)

• Case 3: We have placed each polygon in a leaf node
• Etc… - Depends on the implementer

BSP Trees

 Example BSP Tree

BSP Trees

 Example BSP Tree

BSP Trees

 Example BSP Tree

BSP Trees

 Example BSP Tree

BSP Trees

 Collision Detection
– Recursively travel through both BSP trees checking if

successive levels of the tree actually intersect
• If the sections of the trees that are being tested have

polygons in them:
– If inner level of tree, assume that an intersection occurs and

recurse
– If lowest level of tree, test actual intersection of polygons

• If one of the sections of the trees that are being tested does
not have polygons in it, we can surmise that no intersection
occurs

BSP Trees

 Space Complexity
– Each object must store a BSP tree with links to

children
– Leaf nodes are polygons with geometries as integer

coordinates

– Therefore, space depends on number of levels of
tree, h, and number of polygons (assume convex
triangles - most common), n

– Therefore, space is O(4h + 3n) and Ω(4h + 3n)

BSP Trees

 Time Complexity
– Each object must be tested against every

other object - n2

– If intersection at level 0, must go through the
tree - O(h)

• Assume all trees of same height

– Depends on number of intersections, m
– Therefore, O(n2 + m*h) and Ω(n2)

BSP Trees

 Pros
– Fairly fine grain detection

 Cons
– Complex to implement
– Still fairly slow

– Requires lots of space

Using a sphere

 We surround our entity with a large enough sphere to
ensure that collisions (in the most part) are detected.

• When projected into consecutive
frames, the spheres should overlap.

• This ensures we cover the whole
(well nearly whole) scope of the
possible collision.

• We check if the distance between the two centres of the
spheres is less than the sum of the radii.

• However, while the calculations are simple, the results can
look poor on screen (collision events may occur when the
user actually views no collision).

More precise detection

 When entities are an irregular shape, a number of
spheres may be used.

• In this diagram we use three spheres for
greater accuracy.

• Geometry in games may be better suited to
bounding boxes (not circles).

• To ease calculations, bounding boxes are
commonly axis aligned (irrelevant of entity
transformations they are still aligned to X, Y
and Z coordinates in 3D) These are commonly
called AABBs (Axis Aligned Bounding
Boxes).

Recursive testing of bounding boxes

 We can build up a recursive hierarchy of bounding boxes to
determine quite accurate collision detection.

• Here we use a sphere to test for course grain intersection.
• If we detect intersection of the sphere, we test the two sub

bounding boxes.

• The lower bounding box is further reduced to two more
bounding boxes to detect collision of the cylinders.

Tree structure used to model collision detection

 A recursive algorithm can be used to parse the tree structure for
detecting collisions.

 If a collision is detected and leaf nodes are not null then
traverse the leaf nodes.

 If a collision is detected and the leaf nodes are null then collision
has occurred at the current node in the the structure.

 If no collision is detected at all nodes where leaf nodes are null
then no collision has occurred (in our diagram B, C or D must
record collision).

A B

C

D

E

A

B C

D E

Speed over accuracy

 The approach which offers most speed would be to
have AABBs of a size fixed at entity initialization time.
– That is, irrelevant of entity transformation the associated

AABB does not change in size or shape.

 This is cumbersome for entities shaped like cylinders.
– Plenty of “free space” will exist around the cylinder.

 For more realistic collision detection the bounding
box may fit closely to the entity and rotate along with
associated entity.
– This requires the bounding box to be recomputed every time

an entity is rotated.

Optimization Structures

 All of these optimization structures can be
used in either 2D or 3D

 Packing in memory may affect caching
and performance

Collision Detection

 For each object i containing polygons p
– Test for intersection with object j with

polygons q
– (j > i)

 For polyhedral objects, test if object i
penetrates surface of j
– Test if vertices of i straddle polygon q of j

• If straddle, then test intersection of polygon q with
polygon p of object i

Dimension Reduction

 If two bodies collide in 3-D space, their orthogonal
projections onto the xy, yz, and xy planes, and x, y, and z
axes must overlap.

 Two AABB intersect, if and only if their projections onto
all three axis intersect.
– This is why the bounding boxes are axis aligned.

 1-D Sweep and Prune (projection onto x, y, z axes)

 2D Intersection tests (projection onto xy, yz, xz planes)

X

Y

Očrtani pravokotniki in odkrivanje trkov

 Box A moves to overlap box B

Dimension reduction

1-D Sweep and Prune

 Bounding Volumes projected onto x, y, and z axes
 Have one sorted list for each dimension
 Maintain Boolean flag which only changes if swaps are

made on sorted lists.
– An upper-triangular O(n2) matrix

1-D Sweep and Prune

 If flags are true for all 3 dimensions,
– we pass this pair on to exact collision detection.

 Due to temporal coherence, individual lists are
likely almost sorted already.

 Insertion sort works well where large numbers of
objects move locally.
– O(n+s), where s is the number of pairwise overlaps

2D Intersection Tests

 Bounding Volumes projected onto xy, yz, and zx
planes
– Three 2D rectangles instead of 1D intervals

 Maintain the interval tree for performing 2D
range queries [

Multi-Body Problems

 Multi-body problems have many objects that could be
colliding
– Most common case in games is lots of players or agents
– “Collision” may not mean intersecting, could just mean

being close enough to react
 It is essential to avoid considering every pair (n2 cost)
 Spatial subdivision schemes provide one solution

– Object interactions are detected in a two step process:
which cell am I in, then who else is in my cell?

– Many possible spatial subdivision data structures: fixed
grid, Octrees, Kd-trees, BSP trees, …

 Bounding volume schemes provide another solution
– Hierarchies of bounding volumes

Bounding Volume Hierarchies

 Basic idea is to build a tree where each level of the tree bounds its
children

– Group objects in a hierarchical structure (tree), and recursively build
bounding volume for each tree node to form a hierarchy of bounding
volumes.

– Most common bounding volumes are axis-aligned boxes or spheres

– Generally used for large numbers of static obstacles and a few moving
things

• Put all the static obstacles into the tree

• Test for intersection between moving object and tree

 Intersection test against a bounding volume hierarchy: recursively
traverse the tree, skip the subtree if the bounding volumes don’t
intersect. A collision occurs if a leaf node’s bounding volume
intersect with the test object.

 The major difference is that a bounding volume hierarchy does not
subdivide all of space, only those parts of space that are occupied

Bounding Tree Example

Bounding Volume Hierarchy Example

Architecture for Multi-body Collision Detection

Pruning Multi-body Pairs

 N moving objects + M static objects

 Objective
– to reduce the number of pairs of objects that are actually

compared, to give O(N+M)
 Use coherence

– By sorting objects in 3-space
– Assumes each object is surrounded by a 3-D bounding volume

(AABB)
 Use Dimension Reduction to sort the objects in 3-space

3-D Bounding Volumes

 Types
– Fixed-Size Bounding Cubes

• Recalculating fixed size bounding cubes add less overhead,
as their size remains constant.

– Dynamically-Resized Rectangular bounding
bounding boxes.

• Dynamically resized bounding boxes are the “tightest” axis-
aligned box containing the object at a particular orientation.

• More overhead due to recomputation of min, max x,y,z
values

R

Architecture for Multi-body Collision Detection

Pairwise Collision Detection for Convex Polytopes

 The Lin-Canny collision
detection algorithm
– Tracks closest points

between pairs of convex
polytopes

– Gives closest features
even if objects do not
intersect

Collision Detection

 Discretization in 3D
 Create a voxel array

– Store an ID in each voxel where an object is

– Collision where voxel has an ID already

– Difficult to determine good voxel size

– Huge memory
– Hash table -- gives constant time point queries

Inter-Object Distance

 A related problem:
– Collision Avoidance

 Part of motion planning is to avoid collisions
 Many collision detection algorithms take time into

account
 Estimate Collision Time, distance
 www.cs.unc.edu/~geom/collision.html

 Cheaper distance calculation:

– Compare against

 Approximation:

– Manhattan distance - Shortest side/2

))()((2
21

2
21 yyxxsqrtd −+−=

Collision Detection

)()(2121 yyabsxxabsd −+−=

2d

5.55.143'

54,3

=−+=
=→==

d

ddydx

2/))(),(min(2121 yyabsxxabs −−−

So far, no interaction between rigid bodies

Bodies in Collision
Collisions and Contact

Collision detection –
 determining if, when and where a collision occurs

Collision response –
 calculating the state (velocity, …) after the collision

file:///www/temporary/dijaski.net/cron/archive/45746/C:%5CDocuments%20and%20Settings%5Cmario%5CDesktop%5CW03-courses%5C587%5C587-feb13%5Clesson30%5Clesson30%5CLesson30.exe

A problem with frame rate and collision

 An entity moves around the screen at a given speed. This
speed may be increasing, decreasing (accelerating or
decelerating) or may be static.

 If the speed of an entity is such that the distance moved on
screen is sufficiently large per frame rate, then simply identifying
if vertices cross is not an appropriate solution.
– They may never cross!

Frame 1 Frame 2

Solid wall
Entity

Possible solutions – Projecting bounding box.

 Produce bounding box around an entity at current frame and
next frame position (look ahead) and check collisions using this
new shape.

• For this method to work we are actually carrying out twice
as much detection as required. This is very time
consuming and will possibly reduce performance (even
slower frame rate).

Considering time in collision detection

 Assume entities E1 and E2 are displayed in different positions at
the following frame times t1, t2 (giving the illusion of motion).

E1 E2 E2 E1

t1 t1

• We know they collided, but as far as the display is
concerned no collision has occurred. (they have passed
through each other).
• We need to introduce the notion of time into our equations to aid

collision detection.

Possible solutions – Using time in our equations

 Use a recursive algorithm to check for
intersection at lower time intervals (even though
these will not be displayed on screen).

 Carry out our calculations in 4D (including time).
This is complicated physics and computationally
draining of valuable CPU time.

 In real-time games (such as first person
shooters) these types of calculations are just too
intensive.

)(3tx

)(2tx

What should we do when there is a collision?

Collisions and Contact

)(0tx

)(1tx

Restart the simulation at the time of the collision

Rolling Back the Simulation

Collision time can be found by bisection, etc.

)(3tx

)(2tx

)(0tx

)(1tx

)(ctx

Precise Collision Times

 Generally a player will go from not intersecting
to interpenetrating in the course of a frame

 We typically would like the exact collision time
and place
– Better collision response calculation
– Interpenetration may be algorithmically hard to

manage
– Interpenetration is difficult to quantify
– A numerical root finding problem

 More than one way to do it:
– Hacked (but fast) clean up
– Interval halving (binary search)

Collision Time

 Given a ball at initial position p0 = (x1, x2, x3),
with initial velocity v = (v1, v2, v3), and a
constant acceleration a = (a1, a2, a3). When will
it hit a plane f(x, y, z) = 0
– p = p0 + vt + ½ at2
– Solve the equation f(p) = 0

 But it is the center of the ball that intersects the
plane. To be more accurate, we can simply
move the position so that the objects just
touch, and leave the time the same. (Hacked
clean up)

 Multiple choices for how to move:
– Back along the motion path
– Shortest distance to avoid penetration

Interval Halving Example

t=0

t=1

t=0.5

t=1

t=0.5
t=0.75

t=0.5
t=0.625

t=0.5625

Interval Halving

 Search through time for the point at which the objects collide
 You know when the objects were not penetrating (the last frame)
 You know when they are penetrating (this frame)
 So you have an upper and lower bound on the collision time

– Later than last frame, earlier than this frame

 The aim is to do a series of tests to bring these bounds closer
together

 Each test checks for a collision at the midpoint of the current time
interval
– If there is a collision, the midpoint becomes the new upper bound
– If not, the midpoint is the new lower bound

 Keep going until the bounds are the same (or as accurate as
desired)

Interval Halving Evaluation

 Advantages:
– Finds accurate collisions in time and space, which may be

essential
– Not too expensive

 Disadvantages:
– Takes longer than a hack (but note that time is bounded, and

you get to control it)
– May not work for fast moving objects and thin obstacles

• Why not?

 Still, it is the method of choice for many applications

Collision Response

 What happens if there is a collision?
– A complex issue, no simple and uniform solutions. It is

game dependent.
– Use game physics to find the answer in simple situations.
– Example: in the game of pool, you can calculate the

bounces of balls using Newtonian physics (momentum and
kinetic energy conservation).

Ray-Scene Intersection

Ray-Sphere Intersection

Ray-Sphere Intersection I

Ray-Sphere Intersection II

Ray-Sphere Intersection

Ray-Triangle Intersection

Ray-Plane Intersection

Ray-Triangle I Intersection

Ray-Triangle II Intersection

Other Ray-Primitive Intersections

Intersection Tests:
How About Object-Object ?

 Methods for:
– Spheres
– Oriented Boxes
– Capsules
– Lozenges
– Cylinders
– Ellipsoids
– Triangles

 But first let’s check some basic issues on
collision/response…

Exploit coherency through witnessing

Collision Detection

Speed up with bounding boxes, grids, hierarchies, etc.

separating plane

Two convex objects are
non-penetrating iff there exists a
separating plane between them

First find a separating plane and
see if it is still valid after the next
simulation step

Collision Detection

 Convex objects
– Look for separating plane

• Test all faces

• Test each edge from obj 1 against
vertex of obj 2

– Save separating plane for next animation
frame

Collision Detection

 Concave Objects
– Break apart

– Convex hull
• Automatic or artist-created

Collision Detection

 To go faster
– Sort on one dimension

• Bucket sort (i.e. discretize in 1 dimension)

– Exploit temporal coherence
• Maintain a list of object pairs that are close to each

other
• Use current speeds to estimate likely collisions

– Use cheaper tests

Collision Detection

Conditions for collision

Collision Detection

N

A

B

ba pp −

N

A

B

ba pp −
N

A

B
ba pp −

))()(()()()(ttttt aaaaa xpωvp −×+=

0))()((>−⋅ tt ba ppN 0))()((=−⋅ tt ba ppN 0))()((<−⋅ tt ba ppN

separating contact colliding

Collision Response

Collision Response Sphere approaching a Plane

pn vvv +=

n
pv

nv v

nv−
v′

pv

n)n .(vv =n

np vvv −=

np vvv −=′
What kind of response?

Totally elastic!
No kinetic energy is lost
response is “perfectly bouncy”

“Perfectly Bouncy” Response

nv−
v′

pv
np vvv −=′

Soft Body Collision

Collision

Force is applied to prevent interpenetration

Soft Body Collision

Collision

Apply forces and change the velocity

Harder Collision

Collision

Higher force over a shorter time

Rigid Body Collision

Collision

Impulsive force produces a discontinuous velocity

How to “Suggest” Sphere Deformation?

pn vvv +=

n
pv

nv v

nv−
v′

pv

n)n .(vv =n

np vvv −=

np kvvv −=′

k, in [0,1] coefficient of restitution

Using Coefficient of Restitution:

As k gets smaller more and more energy is lost less and less bouncy

nv−

v′
pv

np vvv 5.0−=′

Using Coefficient of Restitution:

As k gets smaller more and more energy is lost less and less bouncy

nv−

pvv =′

np vvv 0.0−=′

Case Study 1: Player-Wall Collisions

 First person games must prevent the player from walking
through walls and other obstacles

 In the most general case, the player is a polygonal mesh
and the walls are polygonal meshes

 On each frame, the player moves along a path that is not
known in advance
– Assume it is piecewise linear – straight steps on each frame
– Assume the player’s motion could be fast

Stupid Algorithm

 On each step, do a general mesh-to-mesh intersection
test to find out if the player intersects the wall

 If they do, refuse to allow the player to move
 What is poor about this approach? In what ways can we

improve upon it?
– In speed?
– In accuracy?
– In response?

Ways to Improve

 Even the seemingly simple problem of
determining if the player hit the wall reveals a
wealth of techniques
– Collision proxies

– Spatial data structures to localize

– Finding precise collision times

– Responding to collisions

Collision Proxies

 General mesh-mesh intersections are expensive
 Proxy: Something that takes the place of the real object
 A collision proxy is a piece of geometry used to

represent a complex object for the purposes of finding a
collision

 If the proxy collides, the object is said to collide
 Collision points are mapped back onto the original object
 What makes a good proxy?
 What types of geometry are regularly used as proxies?

Proxy Properties

 A good proxy is cheap to compute collisions for and a
tight fit to the real geometry

 Common proxies are spheres, cylinders or boxes of
various forms, sometimes ellipsoids
– What would we use for: A fat player, a thin player, a rocket, a

car …

 Proxies exploit several facts about human perception:
– We are extraordinarily bad at determining the correctness of a

collision between two complex objects
– The more stuff is happening, and the faster it happens, the

more problems we have detecting errors
– Players frequently cannot see themselves
– We are bad a predicting what should happen in response to a

collision

Spatial Data Structures

 You can only hit something that is close to you
 Spatial data structures can tell you what is close to an

object
– Fixed grid, Octrees, Kd-trees, BSP trees, …

 Recall in particular the algorithm for intersecting a
sphere (or another primitive) with a BSP tree
– Collision works just like view frustum culling, but now we are

intersecting more general geometry with the data structure

 For the player-wall problem, typically you use the same
spatial data structure that is used for rendering
– BSP trees are the most common

Exploiting Coherence

 The player normally doesn’t move far between
frames

 The cells they intersected the last time are
probably the same cells they intersect now, or at
least they are close

 The aim is to track which cells the player is in
without doing a full search each time

 Easiest to exploit with a cell portal structure …

Cell-Portal Collisions

 Keep track which cell/s the player is currently intersecting
– Can have more than one if the player straddles a cell boundary
– Always use a proxy (bounding volume) for tracking cells
– Also keep track of which portals the player is straddling

 The only way a player can enter a new cell is through a portal
 On each frame:

– Intersect the player with the current cell walls and contents (because
they’re solid)

– Intersect the player with the portals
– If the player intersects a portal, check that they are considered “in” the

neighbor cell
– If the player no longer straddles a portal, they have just left a cell

 What are the implicit assumptions?

Defining Penetration Depth

 There is more than one way to define
penetration depth

1. The distance to move back along the
incoming path to avoid collision
– But this may be difficult to compute

2. The minimum distance to move in any
direction to avoid collision
– Also difficult to compute in many cases

3. The distance in some particular
direction
– But what direction?
– “Normal” to penetration surface

Managing Fast Moving Objects

 Several ways to do it, with increasing costs
 Test a line segment representing the motion of the center of the

object
– Pros: Works for large obstacles, cheap
– Cons: May still miss collisions. How?

 Conservative prediction: Only move objects as far as you can be
sure to catch the collision
– Pros: Will find all collisions
– Cons: May be expensive, and need a way to know what the maximum

step is
 Space-time bounds: Bound the object in space and time, and check

the bound
– Pros: Will find all collisions
– Cons: Expensive, and have to be able to bound motion

Prediction and Bounds

 Conservative motion:
– Assume a maximum velocity and a smallest feature size
– Largest conservative step is the smallest distance divided by the highest

speed - clearly could be very small
– Other more complex metrics are possible

 Bounding motion:
– Assume linear motion
– Find the radius of a bounding sphere
– Build a box that will contain that sphere for the frame step
– Also works for ballistic and some other predictable motions

 Simple alternative: Just miss the hard cases - the player may not
notice

Collision Response

 For player motions, the best thing to do is generally
move the player tangentially to the obstacle

 Have to do this recursively to make sure that all
collisions are caught
– Find time and place of collision
– Adjust velocity of player
– Repeat with new velocity, start time an start position (reduced

time interval)

 Ways to handle multiple contacts at the same time
– Find a direction that is tangential to all contacts
– How do you do this for two planes?

Game Physics

	Slide 1
	Pomen detekcije trkov
	Slide 3
	Slide 4
	Kaj je odkrivanje trkov?
	Slide 6
	Odkrivanje trkov
	Problem N teles
	Slide 9
	Slide 10
	Uporaba odkrivanja trkov
	Slide 12
	Terminologija
	Izbira algoritma
	Strategije odkrivanja trkov
	Slide 16
	Robustnost
	Slide 18
	Tipi geometrije
	Collision Detection using Bounding Spheres (Boxes)
	Slide 21
	Slide 22
	Obsegajoča krogla in kvader
	Obsegajoči kvader (bounding box)
	Obsegajoči kvader
	Slide 26
	Obsegajoče krogle (Bounding Spheres)
	Obsegajoče krogle
	Slide 29
	Slide 30
	Slide 31
	Poravnani obsegajoči kvadri (Aligned Bounding Boxes)
	Slide 33
	Oriented Bounding Boxes (OBBs)
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Optimization Structures
	Testing BVH’s
	Bounding Volume Hierarchies
	Octrees
	KD Trees
	BSP Trees
	OBB Trees
	K-Dops
	Uniform Grids
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Using a sphere
	More precise detection
	Recursive testing of bounding boxes
	Tree structure used to model collision detection
	Speed over accuracy
	Slide 68
	Collision Detection
	Dimension Reduction
	Očrtani pravokotniki in odkrivanje trkov
	Slide 72
	Slide 73
	1-D Sweep and Prune
	Slide 75
	2D Intersection Tests
	Multi-Body Problems
	Slide 78
	Slide 79
	Bounding Tree Example
	Slide 81
	Slide 82
	Architecture for Multi-body Collision Detection
	Pruning Multi-body Pairs
	3-D Bounding Volumes
	Slide 86
	Pairwise Collision Detection for Convex Polytopes
	Slide 88
	Slide 89
	Slide 90
	Inter-Object Distance
	Slide 92
	Bodies in Collision Collisions and Contact
	A problem with frame rate and collision
	Possible solutions – Projecting bounding box.
	Considering time in collision detection
	Slide 97
	Possible solutions – Using time in our equations
	Collisions and Contact
	Rolling Back the Simulation
	Precise Collision Times
	Collision Time
	Interval Halving Example
	Interval Halving
	Interval Halving Evaluation
	Collision Response
	Ray-Scene Intersection
	Ray-Sphere Intersection
	Ray-Sphere Intersection I
	Ray-Sphere Intersection II
	Slide 111
	Ray-Triangle Intersection
	Ray-Plane Intersection
	Ray-Triangle I Intersection
	Ray-Triangle II Intersection
	Other Ray-Primitive Intersections
	Intersection Tests: How About Object-Object ?
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Collision
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Case Study 1: Player-Wall Collisions
	Stupid Algorithm
	Ways to Improve
	Collision Proxies
	Proxy Properties
	Spatial Data Structures
	Slide 141
	Exploiting Coherence
	Cell-Portal Collisions
	Defining Penetration Depth
	Managing Fast Moving Objects
	Prediction and Bounds
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Game Physics
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159

