
Nefotorealistično
upodabljanje

Whither Graphics?

What is our ultimate goal in computer
graphics?

Photorealism
Makes synthesized pictures appear like

photographs of real objects
Includes distracting artifacts of the

photographic process (e.g. depth of
field, lens flare)

Breeds dishonesty
Communication

Graphics is a high-bandwidth medium
for transmitting information into the
brain

Gray’s Anatomy

http://www.bartleby.com/107/illus505.html

Example:

Image source:
 [Strothotte T., Schlechtweg, S. 2002]

 Each rendering has a
different “feel”.

 Bottom 2 images
would most likely be
presented to customer
as concept art.

 Top 2 images would
most likely be
presented to a
customer as the final
design.

Non-Photorealistic Rendering

Departs from the limits of
photorealism to better
communicate visual
information

Uses concepts from art instead
of physics

Two fundamental visual cues

Silhouette – the visible edges
of a surface

Hatching – the use of texture
to indicate the local
orientation (shading) of a
surface

Dvojčka, Predelava silhuete

Princip obdelave

Predelava upodobljene kokoši

Silhouette Curves

Constructed from edges
shared by both front-facing
and back-facing mesh
polygons

Also include boundary edges

Can be traced incrementally as
a string of silhouette edges

May not be visible, or not
entirely visible

Probability that an edge is a
silhouette is proportional to
π – θ, where θ is the edge’s
dihedral angle

Edge Highlighting

Toon shading (and other NPR techniques based on drawing)
requires some edges be drawn or highlighted:

Silhouette edges

Mesh boundaries (always on silhouette)

Creases (ridge and valley)

Material boundaries

Find first at run-time, precalculate the others (unless object is
deformable)

Silhouette Edges

Surface angle silhouetting

Calc N●V, if below threshold draw black

Best as a per-pixel routine

The Cg program we looked at

Also can do with a spheremap, or use a mip-
map with top-level textures dark

Pros:

Uses the texture hardware fast

Can antialias the resulting lines

Cons:

Line width depends on curvature

Doesn’t work for some models (e.g., a cube)

Silhouette Edges

Procedural Geometry Silhouetting

Idea: render the geometry in such a way that the silhouettes
“fall out”, e.g.:

Draw frontfacing polygons

Draw backfacing polygons

But draw them in (possibly thick)
wireframe

Or draw them z-biased forward a bit

Or “fatten” them

Or displace them along their normals
(“halo” effect)

Flip normals

Amount of displacement
varies w/ distance (why?)

Perfect task for vertex shader!

Pros: relatively robust, doesn’t need connectivity info

Cons: Wastes some fill & some polys, needs antialiasing

Silhouette Edges

Image Processing Silhouetting

Idea: analyze the image after it’s rendered, and extract
silhouettes (i.e., edge detection)

Perfect for fragment program!

Can help by rendering e.g. depth image, object-ID image,
normal image

Silhouette Edges

Silhouette Edge Detection

Idea: find silhouette edges geometrically on the CPU and render them
explicitly

Brute force: test every edge to see if its adjoining
polygons face opposite directions in eye space

Can speed this up with randomized coherent
search

Most work, but gives the most flexibility in how
silhouettes are drawn

GPU variant:

Draw degenerate quadrilateral at each edge

Use vertex shader to “fatten” quad into a “fin” when
edge is on silhouette

Fin thickness based on distance to eyepoint

Highlighting Ridge Edges

Clever related technique by Raskar:

Add “fins” to every edge at dihedral angle

Size fins according to distance to viewer

Again, perfect for vertex shader

Similar but more complicated technique for highlighting valley
edges

Drawing Lines: Outlining Polygons

Surprisingly hard to draw polys as filled outlines

Problem: depth buffer values of edge & polys same

2-pass technique: draw polys, then draw edges

Z-bias edges forward or polygons back
(glPolygonOffset)

Works okay, but has occasional problems

3-pass technique:

Render filled polygon

Disable depth buffer writes (leave depth test on)

Enable color buffer writes

Render polygon edges polygon

Normal depth & color buffering

Render filled polygon again

Enable depth buffer writes

Disable color buffer writes

Drawing Lines:Hidden-Line Rendering

Hidden-line vs. obscured line vs halos

Hidden-line

Draw polygons to depth buffer (not color
buffer)

Draw edges using previous technique

Obscured (light, dotted, dashed) line

Draw all edges in obscured style

Draw polygons to depth buffer (not color
buffer)

Draw edges using previous technique

Haloed line

Draw all edges as thick background-color lines

Draw edges using biasing, foreground-color

navidezno črtana grafika

Računalniška simulacija ročnega risanja

Stara ročna risba

Računalniško generirana “risba”

Koncept “ribje kosti”

Najmanjša ukrivljenost –
hrbtenica

Največja ukrivljenost –
kosti

Izhajamo iz 3D modela
 Koncept računalniške šrafure

Painting

A painting can be seen as a collection of n brush stokes, with
each stroke made up of several properties.

Creative techniques

Like real painting, render the scene in layers

Paint each object with multiple layers, each shrunk in more.
Outside layers are painted sparsely, inner layers painted
thicker.

Isolate highlights, shadows using image processing
techniques and paint in a separate layer

Each object or group of objects in a scene can be given its
own layer

Painting parameters can be chosen per-layer

Semi-transparent layers allow compositing of styles

Painterly Rendering

Goals

Avoid “shower-door” effect

Provide for frame-to-frame coherence

Previous techniques achieved one or the other

Painterly Rendering

How to achieve goals:

Use object geometry, color to decide where to place strokes

Distribute particles on object surface

Paint in screen space whereever a particle is placed

Randomness adds character

Store random seed in “particle”

Perturb color, orientation, scale based on user-selectable
parameters

Study of painterly styles

Many painterly styles correspond closely to perceptual
features that are detected by the human visual system.

Focus on Impressionism
Trying to pair each style with a corresponding visual feature

that has been proved to be effective in a perceptual
visualization environment.

Different painterly styles

Painterly styles can be identified by studying those paints:

Path of the stroke

Length

Density

Coarseness

Weight

Impressionism

Attached to a small group of French artists, Monet, Van Gogh…who
broken the traditional schools of that time to approach painting from a
new perspective

Some underlying principles…
Object and environment interpenetrate
Color acquires independence
Show a small section of nature
Minimize perspective
Solicit a viewer’s optics

Processing Images and Video
for an Impressionist Effect

Transform images/video into animation with Impressionist effect,

 particularly, with hand-painted style

Princip grafičnega impresionizma

Stroke rendering

Stroke generation
Size, position, length

color

Orientation

Random perturbation

Clipping and rendering
Edge preservation

Using brush textures

Example

Without clipping With clipping

Brush stroke orientation

Draw stroke in direction of constant color

the normal to the gradient direction

Area with small magnitude of gradient ?

Interpolate surrounding “good” gradient

Frame-to-frame coherence

How to move strokes across frames
Using Optical flow [Bergen 90] as stroke displacement

How to avoid over-sparse and over dense stroke
distribution?
Delaunay triangulation

Maximal area

Minimal distance

 (a) (b) (c) (d) (e)

Conclusion

An algorithm for producing painterly animation from video

Highlights

Use optical flow to move strokes across frames to keep
temporal coherence

Orient strokes using gradient-based methods

Methods to redistribute strokes

Edge preservation strategy

Drawback

jittering

Other Styles

Impressionistic or “painterly” rendering:

Sprinkle particles on object surface

Draw particles as brushstrokes

Can render images to encode normals, surface curvature,
depth, color/tone info

Painterly Rendering

More info if time permits…

Računalniško generirane “vodne barvice”

Resnične vodne barvice

Simulacija vodnih barvic

Preliv vode po papirju

Kapilarna absorbcija
vode v papir

Vpijanje in
izplakovanje pigmenta

Princip simulacije vodnih barvic

Simulacija papirja

In real watercolor, the structure of the paper affects fluid flow, backruns, and
granulation. The mechanics underlying these effects may be quite complex, and may
depend on the precise connections among the individual fibers, as well as the exact
slopes of the finescale peaks and valleys of the paper.

We use a much simpler model in our system. Paper texture is modeled as a height
field and a fluid capacity field. The height field h is generated using one of

a selection of pseudo-random processes, and scaled so that 0 < h < 1. Some examples
of our synthetic paper textures can be seen in Figure. The slope of the height field is
used to modify the fluid velocity u, v in the dynamics simulation. In

addition, the fluid capacity c is computed from the height field h, as

c = h *(cmax - cmin) + cmin.

Različni barvni pigmenti

Glavna zanka

Članek

Drugi stili

Hatching:
Store different cross-hatch

patterns representing
different tones as textures

Clever ways to use texture
hardware to blend between
tones at run-time

More info if time permits…

Other Styles

“Graftals” are a general term used for strokes, decals, little
bits of geometry

Dynamic placement of graftals to achieve certain
effects/styles:

The Algorithm in Detail

Step 1: Create particles to represent geometry

The Algorithm cont...

Step 2: For each frame of
animation...

create reference pictures
using geometry, surface
attributes, and lighting

The Algorithm cont...

Step 3: Also for each frame of the animation...

transform particles based on animation parameters

sort particles by distance from viewpoint

for each particle, starting with furthest from viewpoint

transform particle to screen space

determine brush stroke attributes from
reference pictures or particles and
randomly perturb them based on user-
selected parameters

composite brush stroke into paint buffer
end (for each particle)

Putting it all together

Technical considerations

Brush strokes may jitter in size and orientation slightly between
frames

So blur the size and orientation reference images before
sampling

Rendering of back-facing particles

Useful so previously obscured strokes don't pop in when
animating

Can cause visual problems when layering

Their solution culls back-facing particles, but fades them in
as they get close to front-facing

Future Directions

Combining painterly look with traditional renderer

Automatically handling changing object size

Improving particle-placement algorithm to cover geometric
surfcace and screen space more evenly

Implementing longer, deformable brushes that can follow
curves on a surface

Cel-shading Concepts

Cel Shading

Also called Cartoon Shading, or Hard Shading.

Named after the process of inking and coloring cels (clear
plastic sheets) in hand-drawn animation.

3D objects look like a 2D cartoon.

Two steps: Shading, Outline Drawing

Cel-Shading Example

Image source: Intel Corporation, http://www.intel.com/labs/media/3dsoftware/nonphoto.htm

Shading

1D Textures – a 1xn texture.

Texture
Coordinate: 0 0.5 1

Consider this texture:

Texture
Coordinate: 0 0.5 1

Choosing Texture Coordinate

Use light equation to pick a texture coordinate.
Recall the lighting model:

nl

θ

eye

Choosing Texture Coordinate

 LIGHT COSθ TEXTURE

n 0 .5 1

l

1

0
0˚ 90˚

l
l

l l

Outlining

When is an edge part of the object outline?

Border – The edge is not shared.

Silhouette – An edge is shared between a front-facing and back-facing
polygon.

Hard edges – An edge shared by polygons that meet within some
angle threshold (0° through 180°).

 Border Silhouette Hard Edges

Algorithms

Software: (after drawing shading)
Build an edge list.
for each edge in edge list

if edge not shared then
draw edge.

if edge belongs to front-facing and back-facing polygon then
draw edge

if edge belongs to two front-facing polygons that meet within
some threshold then

draw edge

Hardware: (after drawing shading)
Use Z-Buffer and hardware support for drawing front-facing or back-facing polygons.

Using the OpenGL pipeline

Set Z-Buffer comparison to less than or equal.
::glDepthFunc(GL_LEQUAL)

Tell the hardware to draw only back-facing
polygons, and to draw them in wireframe mode.
::glCullFace(GL_FRONT)
::glPolygonMode(GL_BACK, GL_LINE)

Set line width > 1.0 for outlines
::glLineWidth(w)

Draw model.

Using the Hardware (continued)

+ =

The border comes from the Z-Buffer test. The only edges of the back-facing
wireframe that are drawn are the edges that are at the same depth as the
shaded front-facing polygons (i.e., silhouette edges).

Shading
Back faces of

wireframe sphere
Final cell-shaded

sphere

Trade Offs

Software Hardware

Have to maintain an edge list. No additional data structures.

Outline can be drawn in the same
rendering pass as the shading.

Outline requires another rendering
pass.

Allows borders, outlines, and hard
edges.

Draws only silhouettes and certain
borders.

More difficult to implement. Very easy to implement.

Examples

Left: Screenshot from the game XIII
(UbiSoft), an example of real-time cel
shading.

Right: Image from Hotaru, a short
animation created using a cel-shading
plugin (unReal) for Lightwave3D.

Related Resources

NeHe’s cel-shading tutorial: http://nehe.gamedev.net/, lesson 37.

Many resources for cel shading: http://www.celshader.com/links.html

BESM – Freeware (source code available) plugin for Lightwave 3D:
http://www.celshaded.com/

Hotaru animation - http://ikkyuu-an.homeip.net/%7Eshishi/hotaru/

XIII game - http://www.whoisxiii.com/community/index.php

http://nehe.gamedev.net/
http://nehe.gamedev.net/
http://nehe.gamedev.net/
http://www.celshader.com/links.html
http://www.celshaded.com/
http://ikkyuu-an.homeip.net/%7Eshishi/hotaru/
http://www.whoisxiii.com/community/index.php
http://www.whoisxiii.com/community/index.php

Academic Resources
Lake, A., Marshall, C., Harris, M., and Blackstein, M. Stylized rendering techniques for scalable real-time 3d animation. Proceedings of NPAR 2000,

13--20. http://citeseer.nj.nec.com/lake00stylized.html

Ramesh Raskar. Hardware support for non-photorealistic rendering. Proceedings of SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 41--46, August 2001. http://citeseer.nj.nec.com/raskar01hardware.html

L. Markosian, M. Kowalski, S. Trychin, and J. Hughes. Real-Time NonPhotorealistic Rendering. In SIGGRAPH 97 Conference Proceedings, August
1997. http://citeseer.nj.nec.com/markosian97realtime.html

Gooch B., Gooch A. Non-Photorealistic Rendering. A.K. Peters, 2001.
(available in Noble Library)

Strothotte T., Schlechtweg, S. Non-Photorealistic Computer Graphics: Modeling, Rendering, and Animation. Morgan Kaufmann Publishers, 2002.
(available in Noble Library)

http://citeseer.nj.nec.com/raskar01hardware.html

Cartoon Rendering of Smoke Animations

Cartoon Smoke

Uses physically-based
simulation to drive
nonphotorealistic rendering

Draws silhouette edges
based on depth differences
technique

Maintains temporal
coherence

Simulation-Rendering Interface

Size determined by density around particle

Color determined by temperature or density

Rotation and amount of stretch determined by particle’s
velocity

Combining Perception and Impressionist
Techniques for Nonphotorealistic Rendering of

Multidimensional Data

Nonphotorealistic rendering in Sci
Viz

Art and perceptual psychology’s inspiration for scientific
visualization

Art is a natural source for visual inspiration

Perceptual psychology attempts to understand how the
human visual system sees.

Presentation sequences

Today …

“Visualizing multivalued data from 2D incompressible flows
using concepts from painting”

“Line direction matters: an argument for the use of principal
directions in 3D line drawing”

Multidimensional visualization

A multidimensional dataset D consists of n sample points,
each of which is associated with multiple data attributes.

Establishment of a data-feature mapping that converts the
raw data into images

The visualization process should be rapid, accurate and
effortless.

Methods

Applying results from human perception to create images that
harness the strengths of our low-level visual system

Using artistic techniques from the Impressionist movement to
produce painterly renditions that are both beautiful and
engaging.

Relations

These definitions provide an effective way to relate the
visualization process to a painted image.

Match many of the painterly styles to visual feature used in
visualization

Data elements in a dataset are analogous to a brush
stroke in a painting. Attribute value could be used to
select specific value for each style

Perceptual characteristic

The goal of visualization is to explore and analyze the data
rapidly, accurately and effortlessly.

Perceptual psychology identifies a limited set of visual
features that can detected by low-level visual system
rapidly, accurately and effortlessly---preattentives

Preattentives

Analysis is rapid and accurate, often requiring no more than 200ms.

Task completion time is constant and independent of the number of
elements in a display

When combining PROPERLY, preattentive features can be used to
perform different types of high-speed exploratory analysis of large,
multivariated datasets.

Preattentives

Preattentives

Preattentives

Colors and textures

The paper focuses on the combined use of color and texture.

Color selection

Texture selection

Feature hierarchies

Color selection

A set of colors should be selected such that:

Any color can be detected preattentively, even in the
presence of all the others.

The colors are equally distinguishable from one another.
Every color is equally to identify.

Three criteria

Background research and their experiment prove that three
factors should be considered to achieve the goal:

Color Distance

Linear Separation

Color Category

Color Distance

Perceptually balanced color models are often used to measure perceived
color difference between pairs of colors.

CLE LUV are used in the paper.

L: luminance UV:chromaticity

The Euclidean distance responds roughly to their perceived color
difference.

Linear Separation

Colors that are linearly separable are significantly easier to
distinguish from one another.

Color Category

Colors from different named categories have a large
perceived color difference.

In Munsell color model, the hue axis is specified using the ten
color names R, YR, Y, GY, G, BG, B, PB, P, RP.

One color selection techniques

First the class space is subdivided into r named color regions.
N colors are then selected by choosing n/r colors uniformly

spaced along each of the r color region.
Colors are chosen such that color distance and linear

separation are constant in each named color region.

Texture selection

Textures can be decomposed into fundamental perceptual
dimensions such as regularity, directionality, etc

The paper designed a set of perceptual texture elements, or
pexels, that supports the variation of three separate texture
dimension: density, regularity, height.

Examples

Pexel

Pexels look like a collection of one or more upright paper
strips.

The attribute value for a particular element can control the
appearance of its pexel, by mapping attributes to density,
height and regularity.

Pexel example

Feature hierarchy

One visual feature may mask another, which causes visual
interference.

The ranking of each brush stoke style’s perceptual strength is
critical for effectively visualization design.

The most important attribute should be displayed using the
most salient features.

Low-level visual system hierarchy

A luminance-hue-texture interference pattern.

Variation is luminance can slow a viewer’s ability to
identify the presence of individual hues. But not vice-
versa.

Texture hierarchy

Experiments show a height-density-regularity pattern.

Visualization process

One or more computer generated brush strokes are attached
to each data element in the dataset.

The brush stroke has style properties that we can vary to
modify its visual appearance.

Data value in the data element are used to select specific
states for the different properties.

Visualizing environmental
weather data

Feature hierarchy

Color > orientation > density > regularity

Density is divided into two separate parts:

Energy: the number of strokes to represent a data element

Coverage: the percentage of a data element’s screen
space covered by its stroke

Mapping

Results

	Nefotorealistično upodabljanje
	Whither Graphics?
	Slide 3
	Example:
	Non-Photorealistic Rendering
	Slide 6
	Dvojčka, Predelava silhuete
	Princip obdelave
	Predelava upodobljene kokoši
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Silhouette Curves
	Edge Highlighting
	Silhouette Edges
	Silhouette Edges
	Slide 18
	Slide 19
	Highlighting Ridge Edges
	Drawing Lines: Outlining Polygons
	Drawing Lines:Hidden-Line Rendering
	Slide 23
	Slide 24
	Slide 25
	navidezno črtana grafika
	Stara ročna risba
	Slide 28
	Koncept računalniške šrafure
	Painting
	Slide 31
	Slide 32
	Creative techniques
	Slide 34
	Painterly Rendering
	Slide 36
	Study of painterly styles
	Different painterly styles
	Slide 39
	Slide 40
	Impressionism
	Processing Images and Video for an Impressionist Effect
	Princip grafičnega impresionizma
	Stroke rendering
	Example
	Brush stroke orientation
	Frame-to-frame coherence
	Conclusion
	Other Styles
	Slide 50
	Slide 51
	Simulacija vodnih barvic
	Slide 53
	Princip simulacije vodnih barvic
	Simulacija papirja
	Različni barvni pigmenti
	Glavna zanka
	Drugi stili
	Slide 59
	The Algorithm in Detail
	The Algorithm cont...
	Slide 62
	Putting it all together
	Technical considerations
	Future Directions
	Slide 66
	Slide 67
	Cel-shading Concepts
	Cel Shading
	Cel-Shading Example
	Shading
	Choosing Texture Coordinate
	Slide 73
	Outlining
	Algorithms
	Using the OpenGL pipeline
	Using the Hardware (continued)
	Trade Offs
	Examples
	Related Resources
	Academic Resources
	Cartoon Rendering of Smoke Animations
	Cartoon Smoke
	Simulation-Rendering Interface
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Combining Perception and Impressionist Techniques for Nonphotorealistic Rendering of Multidimensional Data
	Nonphotorealistic rendering in Sci Viz
	Presentation sequences
	Multidimensional visualization
	Methods
	Relations
	Perceptual characteristic
	Preattentives
	Slide 99
	Slide 100
	Slide 101
	Colors and textures
	Color selection
	Three criteria
	Color Distance
	Linear Separation
	Color Category
	One color selection techniques
	Texture selection
	Slide 110
	Pexel
	Pexel example
	Feature hierarchy
	Low-level visual system hierarchy
	Texture hierarchy
	Visualization process
	Visualizing environmental weather data
	Slide 118
	Mapping
	Results

