
Nivoji podrobnosti

Level of Detail (LOD)

Problem s podrobnostmi

Grafični sistemi so preplavljeni s podatki o modelih

 Zelo podrobne podatkovne baze CAD

 Zelo natančna skeniranja ploskev

Viri, ki so na voljo, so omejeni

 CPE, prostor, hitrost grafike, Pasovna širina omrežja

Potrebujemo bolj ekonomične modele

 Želimo najmanjši nivo podrobnosti (level of detail, LOD),
ki še zadošča

LOD in interaktivnost

Nivo podrobnosti (LOD) je pomembna tehnika za
zagotavljanje interaktivnosti

 Kompromis med vernostjo in učinkovitostjo

 Ni edina tehnikal! Je komplement:

▪ Vzporednem upodabljanju

▪ Izločanju zakritih stvari

▪ Upodabljanju na nivoju slike (image-based rendering)

▪ itd...

Omejitve vida

Visual acuity

 Retina can resolve detail of around 0.5 min of arc

 130 million photoreceptors / 1 million ganglion cells

Peripheral Vision

 Highest sensitivity to spatial detail at fovea
 (the central 4 to 5 degrees of vision)

 35-fold reduction from fovea → periphery

Motion Sensitivity

 Eye less sensitive to detail moving across retina

 Fast moving objects become “blurred”

Visual Perception Software

Vermeer

“Officer and Laughing
Girl”, 1658-60

120 x 135 degrees FOV

No eccentricity blurring

No velocity blurring

Visual Perception Software

Vermeer

“Officer and Laughing
Girl”, 1658-60

120 x 135 degrees FOV

Eccentricity blurring

No velocity blurring

Visual Perception Software

Vermeer

“Officer and Laughing
Girl”, 1658-60

120 x 135 degrees FOV

Eccentricity blurring

Velocity = 60 deg/s

Modeliranje omejitev vida

Results of Contrast Grating
tests can be modeled with a
Contrast Sensitivity Function

CSF defines the bandwidth of
vision

Faktorji CSF

Background illumination

 Contrast sensitivity degrades in dim conditions
Display Device Settings

 Brightness, contrast, color, and gamma
Viewer’s level of light adaption

 Photoreceptor range and pupil dilation controlled by
a feedback loop

Viewer’s visual system efficiency

 e.g., myopia causes light to converge in front of
retina

Viewer’s age

 Contrast sensitivity less developed in infants &
declines with old age

Faktorji CSF (nadaljevanje)

Viewer’s emotional state

 Affects dilation of pupils: smaller pupil = less light = drop in visual
acuity

Auditory Stimuli?
 Recent Nature paper shows visual perception affected by a adding

an audible beep during task

Therefore, perceptual data are normally based upon a
“Standard Observer”, assuming ideal environmental and

viewer conditions.

LOD: osnovna zamisel

The problem:

 Geometric datasets can be too complex to render at
interactive rates

One solution:

 Simplify the polygonal geometry of small or distant
objects

 Known as Level of Detail or LOD

▪ polygonal simplification, geometric simplification,
mesh reduction, decimation, multiresolution modeling,
…

69,451 poligonov 2,502 poligonov 251 poligonov 76 poligonov

Tvorba LOD za predmete

LOD: Vprašanja

How to represent and generate simpler versions of a
complex model?

How to evaluate the fidelity of the simplified models?

When to use which LOD of an object?

69,451 poligonov 2,502 poligonov 251 poligonov 76 poligonov

Oddaljeni predmeti - bolj grob nivo podrobnosti

LOD in oddaljenost

 Select resolution based upon the distance between an element and the
viewpoint, i.e. coarser resolution for distant geometry.
 Simple to calculate (3-D Euclidean distance)
 Scale dependent
 Resolution dependent
 Field of View dependent

d1

d2

Velikost in LOD

 Select resolution based upon the
projected screen size (or area) of an
element. Objects appear smaller as they
move further away.

 Requires 3-D → 2-D projection

 Scale invariant

 Resolution invariant

 Field of View invariant
Bounding spheres or ellipsoids normally used
instead of boxes as more efficient to calculate
projected extent

Ekscentričnost in LOD

 Resolution is selected based upon the degree
to which an element exists in the visual
periphery, i.e. display elements that the user is
looking at in high resolution.

 Humans can resolve less detail in their
peripheral field due to:

- more retinal photoreceptors (rods/cones)
towards fovea

- retinal and cortical cell receptive field sizes
increases linearly with eccentricity

- 80% of cortical cells devoted to central 10
degrees of vision

 Use eye tracking system to track user’s gaze or
assume user looking towards center of display

θθ

Hitrost in LOD

 olution based upon the angular velocity of
an element across the visual field, i.e.
faster moving objects appear in lower
resolution

 Humans can resolve less spatial detail in
objects moving across the retina, causing
objects to blur as they move/ rotate, or the
user’s gaze moves

 It is believed visual information for small
features are destroyed by the process of
integrating stimulus energy over time

 Without eye tracking technology, assume
angular velocity across display device

20 deg/s20 deg/s

1 deg/s1 deg/s

Globina polja in LOD

 Resolution of element dependent upon the depth of field focus of
the user’s eyes, i.e. objects out with the fusional area appear in
lower detail

 Under binocular vision, both eyes converge on object at certain
distance in order to focus retinal image

 Objects in front or behind this fusional area are unfocused,
suffering from double images

 Must track both eyes accurately to
evaluate convergence distance

Panum’s fusional area

Povzetek

Primary LOD selection criteria
 Distance or Size
 Velocity
 Eccentricity
 Depth of Field

Additional LOD constraints
 Fixed-frame rate schedulers (reactive or predictive)
 Hysteresis (switching lag)
 Priority schemes
 Alpha-blended transitions (fading regions)
 Geomorph transitions (morph geometry)

Statična resolucija ne zadošča

Model used in variety of contexts

 many machines; variable capacity

 projected screen size will vary

Context dictates required detail

 LOD should vary with context

 context varies over time

 with what level of coherence?

▪ generally high coherence in
view

▪ possibly poor coherence in load

Potrebujemo večresolucijske modele(Multiresolution Models)

Encode wide range of levels of detail

 extract appropriate approximations at run time

 must have low overhead

▪ space consumed by representation

▪ cost of changing level of detail while rendering

 can be generated via simplification process

Image pyramids (mip-maps) a good example

 very successful technique for raster images

Zgradba LOD

Discrete LOD

 Generate a handful of LODs for each object

Continuous LOD (CLOD)

 Generate data structure for each object from which a
spectrum of detail can be extracted

View-dependent LOD

 Generate data structure from which an LOD specialized
to the current view parameters can be generated on the
fly.

 One object may span multiple levels of detail

Hierarchical LOD

 Aggregate objects into assemblies with their own LODs

Discrete Multiresolution Models

Given a model, build a set of approximations

 can be produced by any simplification system

 at run time, simply select which to render

Inter-frame switching causes “popping”

 can smooth transition with image blending

 or use geometry blending: geomorphing [Hoppe]

Supported by several software packages

Tradicionalni pristop: Diskretni nivo podrobnosti

Traditional LOD in a nutshell:

 Create LODs for each object separately in a preprocess

 At run-time, pick each object’s LOD according to the
object’s distance (or
similar criterion)

Since LODs are created offline at fixed resolutions, we call
this discrete LOD

Diskretni LOD:Prednosti

Simplest programming model; decouples simplification and
rendering

 LOD creation need not address real-time rendering
constraints

 Run-time rendering need only pick LODs

Fits modern graphics hardware well

 Easy to compile each LOD into triangle strips, display
lists, vertex arrays, …

 These render much faster than unorganized triangles on
today’s hardware (3-5 x)

So why use anything but discrete LOD?

Answer: sometimes discrete LOD not suited for
drastic simplification

Some problem cases:

 Terrain flyovers

 Volumetric isosurfaces

 Super-detailed range scans

 Massive CAD models

Diskretni LOD:Slabosti

Poenostavljanje: problem velikih objektov

Poenostavljanje: problem majhnih objektov

Limits of Discrete Models

We may need varying LOD over surface

 large surface, oblique view (eg. on terrain)
▪ need high detail near the viewer
▪ need less detail far away

 single LOD will be inappropriate
▪ either excessively detailed in the distance

(wasteful)
▪ or insufficiently detailed near viewer (visual

artifacts)

Doesn’t really exploit available coherence

 small view change may cause large model
change

Poenostavljanje

For drastic simplification:

 Large objects must be subdivided

 Small objects must be combined

Difficult or impossible with discrete LOD

Choosing LODs:LOD Run-Time Management

Fundamental LOD issue: where in the scene to allocate
detail?

 For discrete LOD this equates to choosing which LOD
will represent each object

 Run every frame on every object; keep it fast

Choosing LODs

Describe a simple method for the system to choose LODs

 Assign each LOD a range of distances

 Calculate distance from viewer to object

 Use corresponding LOD

How might we implement this in a scene-graph based
system?

Implementacija preklapljanja LOD

Implementacija preklapljanja LOD

Implementacija mehkega prehoda LOD

Primerjava preklapljanja in prehoda

Mehki prehod

Choosing LODs

What’s wrong with this simple approach?

 Visual “pop” when switching LODs can be disconcerting

 Doesn’t maintain constant frame rate; lots of objects still
means slow frame times

 Requires someone to assign switching distances by
hand

 Correct switching distance may vary with field of view,
resolution, etc.

What can we do about each of these?

Choosing LODs Maintaining constant frame rate

One solution: scale LOD switching distances by a “bias”

 Implement a feedback mechanism:

▪ If last frame took too long, decrease bias

▪ If last frame took too little time, increase bias

 Dangers:

▪ Oscillation caused by overly aggressive feedback

▪ Sudden change in rendering load can still cause
overly long frame times

Choosing LODs: Maintaining constant frame rate

A better (but harder) solution: predictive LOD selection

For each LOD estimate:

 Cost (rendering time)

 Benefit (importance to the image)

Choosing LODs: Maintaining constant frame rate

A better (but harder) solution: predictive LOD selection

For each LOD estimate:

 Cost (rendering time)

▪ # of polygons

▪ How large on screen

▪ Vertex processing load (e.g., lighting) OR

▪ Fragment processing load (e.g., texturing)

 Benefit (importance to the image)

Choosing LODs: Maintaining constant frame rate

A better (but harder) solution: predictive LOD selection

For each LOD estimate:

 Cost (rendering time)

 Benefit (importance to the image)
▪ Size: larger objects contribute more to image
▪ Accuracy: no of verts/polys, shading model, etc.
▪ Priority: account for inherent importance
▪ Eccentricity: peripheral objects harder to see
▪ Velocity: fast-moving objects harder to see
▪ Hysteresis: avoid flicker; use previous frame state

Zvezni nivo podrobnosti

A departure from the traditional discrete approach:

 Discrete LOD: create individual levels of detail in a
preprocess

 Continuous LOD: create data structure from which a
desired level of detail can be extracted at run time.

Zvezni LOD:prednosti

Better granularity  better fidelity

 LOD is specified exactly, not chosen from a few pre-
created options

 Thus objects use no more polygons than necessary,
which frees up polygons for other objects

 Net result: better resource utilization, leading to better
overall fidelity/polygon

Better granularity  smoother transitions

 Switching between traditional LODs can introduce visual
“popping” effect

 Continuous LOD can adjust detail gradually and
incrementally, reducing visual pops

▪ Can even geomorph the fine-grained simplification
operations over several frames to eliminate pops

Zvezni LOD:prednosti

Supports progressive transmission
 Progressive Meshes [Hoppe 97]

 Progressive Forest Split Compression [Taubin 98]

Leads to view-dependent LOD

 Use current view parameters to select best
representation for the current view

 Single objects may thus span several levels of detail

View-Dependent LOD: Primeri

Show nearby portions of object at higher resolution than
distant portions

View from eyepoint Birds-eye view

View-Dependent LOD: Primeri

Show silhouette regions of object at higher resolution than
interior regions

View-Dependent LOD:Primeri

Show more detail where the user is looking than in their
peripheral vision:

34,321 trikotnikov

View-Dependent LOD:primeri

Show more detail where the user is looking than in their
peripheral vision:

11,726 trikotnikov

View-Dependent LOD:Prednosti

Even better granularity

 Allocates polygons where they are most needed, within
as well as among objects

 Enables even better overall fidelity

Enables drastic simplification of very large objects

 Example: stadium model

 Example: terrain flyover

Streaming over the Web

TerraVision (SRI)

Yosemite Park

San Francisco Bay

Hierarhični LOD

View-dependent LOD solves the
Problem With Large Objects

Hierarchical LOD can solve the
Problem With Small Objects

 Merge objects into assemblies

 At sufficient distances, simplify assemblies, not
individual objects

 How to represent this in a scene graph?

Hierarhični LOD

Hierarchical LOD dovetails nicely with view-dependent LOD
 Treat the entire scene as a single object to be simplified in view-

dependent fashion

Hierarchical LOD can also sit atop traditional discrete LOD
schemes

Izbira LODs: Upravljanje LOD v realnem času

Fundamental LOD issue: where in the scene to allocate
detail?

 For discrete LOD this equates to choosing which LOD
will represent each object

 Run every frame on every object; keep it fast

Izbira LOD

Describe a simple method for the system to choose LODs

 Assign each LOD a range of distances

 Calculate distance from viewer to object

 Use corresponding LOD

How might we implement this in a scene-graph based
system?

Izbira LOD

What’s wrong with this simple approach?

 Visual “pop” when switching LODs can be disconcerting

 Doesn’t maintain constant frame rate; lots of objects still
means slow frame times

 Requires someone to assign switching distances by
hand

 Correct switching distance may vary with field of view,
resolution, etc.

Izbira LOD: vzdrževanje konstantnega števila slik (frame rate)

One solution: scale LOD switching distances by a “bias”

 Implement a feedback mechanism:

▪ If last frame took too long, decrease bias

▪ If last frame took too little time, increase bias

 Dangers:

▪ Oscillation caused by overly aggressive feedback

▪ Sudden change in rendering load can still cause
overly long frame times

Avtomatska poenostavitev ploskev

Avtomatska poenostavitev ploskev

Produce approximations with fewer triangles

 should be as similar as possible to original

 want computationally efficient process

Need criteria for assessing model similarity

 for display, visual similarity is the ultimate goal

 similarity of shape is often used instead

▪ generally easier to compute

▪ lends itself more to applications other than display

Fokus na poligonskih modelih

Polygonal surfaces are ubiquitous

 only primitive widely supported in hardware

 near-universal support in software packages

 output of most scanning systems

Switching representations is no solution

 indeed, some suffer from the same problem

 many applications want polygons

Will always assume models are triangulated

Druga področja

Geometry compression

 simplification is a kind of lossy compression

Surface smoothing

 reduces geometric complexity of shape

Mesh generation

 finite element analysis (e.g., solving PDE’s)

 need appropriate mesh for good solution

 overly complex mesh makes solution slow

Pregled metod poenostavljanja

Manual preparation has been widely used

 skilled humans produce excellent results

 very labor intensive, and thus costly

Most common kinds of automatic methods

 vertex clustering

 vertex decimation

 iterative contraction

Združevanje verteksov

Partition space into cells

 grids [Rossignac-Borrel], spheres [Low-Tan], octrees, ...

Merge all vertices within the same cell

 triangles with multiple corners in one cell will degenerate

Zmanjševanje števila verteksov

Starting with original model, iteratively
 rank vertices according to their importance
 select unimportant vertex, remove it, retriangulate hole

A fairly common technique

Iterativno krčenje robov

Contraction can operate on any set of vertices
 edges (or vertex pairs) are most common, faces also used

Starting with the original model, iteratively
 rank all edges with some cost metric
 contract minimum cost edge
 update edge costs

Krčenje robov

Single edge contraction (v1,v2) → v’ is performed by

 moving v1 and v2 to position v’

 replacing all occurrences of v2 with v1

 removing v2 and all degenerate triangles

v1

v2
v’

Algoritem rušenja robov

V1

V2 V2Collapse

Algoritem rušenja robov

Sort all edges (by some metric)

repeat

Collapse edge

choose edge vertex (or compute optimal
vertex)

Fix-up topology

until (no edges left)

Iterativno krčenje robov

Currently the most popular technique

 simpler operation than vertex removal

 well-defined on any simplicial complex

Also induces hierarchy on the surface

 a very important by-product

 enables several multiresolution applications

Prednosti rušenja robov

Edge collapse operation is simple

Supports non-manifold topology:

Ohranjevanje mej

To preserve important boundaries, label edges as
normal or discontinuity

For each face with a discontinuity, a plane
perpendicular intersecting the discontinuous edge
is formed.

These planes are then converted into quadrics,
and can be weighted more heavily with respect to
error value.

Preprečevanje inverzije mreže

Preventing foldovers:

Calculate the adjacent face normals, then test if they would
flip after simplification

If so, that simplification can be weighted heavier or
disallowed.

10

54

6

1

3

2

9
A

7
8

10

54

6
3

2
8

9
A

merge

Krčenje parov verteksov

Can also easily contract any pair of vertices

 fundamental operation is exactly the same

 joins previously unconnected areas

 can be used to achieve topological simplification

Rušenje robov : združevanje parov verteksov

Even better: vertex-pair merging merges two vertices that:

 Share an edge, or

 Are within some threshold distance t

View-Dependent LOD: Algoritmi

Many good published algorithms:

 Progressive Meshes by Hoppe
Merge Trees by Xia & Varshney [Visualization 96]

 Hierarchical Dynamic Simplification by Luebke & Erikson
Multitriangulation by DeFloriani et al

 Others…

Pregled: Algoritem VDS

Overview of the VDS algorithm:

 A preprocess builds the vertex hierarchy,
a hierarchical clustering of vertices

 At run time, clusters appear to grow and shrink as the
viewpoint moves

 Clusters that become too small are collapsed, filtering
out some triangles

Vertex Hierarchies

A cut through the tree
 contract all below cut
 leaves are “active”
 determines partition
 and an approximation

Encodes dependencies
 PM’s assume total order
 disjoint subtrees indep.
 get novel approximations

 but must avoid fold-over

Podatkovne strukture

The vertex hierarchy

 Represents the entire model

 Hierarchy of all vertices in model

 Queried each frame for updated scene

The active triangle list

 Represents the current simplification

 List of triangles to be displayed

 Triangles added and deleted by operations on vertex
tree

Vertex Hierarchies for View-Dependent Refinement

Multiresolution representation for display
 incrementally move cut between frames

[Xia-Varshney, Hoppe, Luebke-Erickson]

 move up/down where less/more detail needed
 relies on frame-to-frame coherence
 can accommodate geomorphing

Common application of vertex hierarchy
 hierarchy only guides active front evolution
 more flexibility & overhead vs. discrete multires

Hierarhija verteksov

Each node in vertex hierarchy supports a subset of the
model vertices

 Leaf nodes support a single vertex from the original full-
resolution model

 The root node supports all vertices

For each node we also assign a representative vertex or
proxy

Drevo verteksov: Zapiranje in odpiranje

3

1

2

9

8 7

10

54

6

A

9

8

10

54

6

A

3

Fold Node A

Unfold Node A

Folding a node collapses its vertices to the proxy

Unfolding the node splits the proxy back into vertices

Primer drevesa verteksov

3

1

2

9

8 7

10

54

6

1 2 7 4 5 6 8 9

A B C10

D

3

E

R

A

Triangles in active list Vertex hierarchy

Primer drevesa verteksov

9

8

10

54

6

1 2 7 4 5 6 8 9

B C10

D

3

E

R

A

3
A

Triangles in active list Vertex hierarchy

Primer drevesa verteksov

9

8

10

54

6

1 2 7 4 5 6 8 9

B C10

D

3

E

R

A

3

B

A

Triangles in active list Vertex hierarchy

Primer drevesa verteksov

10

1 2 7 4 5 6 8 9

C10

D

3

E

R

A

3

B

8

9

A B

Triangles in active list Vertex hierarchy

Primer drevesa verteksov

10

1 2 7 4 5 6 8 9

C10

D

3

E

R

A

3

B

C

8

9

A B

Triangles in active list Vertex hierarchy

Primer drevesa verteksov

10

1 2 7 4 5 6 8 9

10

D

3

E

R

A

3

B

C

A B C

Triangles in active list Vertex hierarchy

Primer drevesa verteksov

E
10

1 2 7 4 5 6 8 9

10

D

3

R

A

3

B

C E

A B C

Triangles in active list Vertex hierarchy

Primer drevesa verteksov

10

1 2 7 4 5 6 8 9

C10

D

3

R

A

B

E

A B

E

Triangles in active list Vertex hierarchy

Primer drevesa verteksov

1 2 7 4 5 6 8 9

C10 3

R

B

E

D
A

10

A B

D E

Triangles in active list Vertex hierarchy

Primer drevesa verteksov

1 2 7 4 5 6 8 9

A C10 3

R

B

E

D

B

D E

Triangles in active list Vertex hierarchy

Primer drevesa verteksov

1 2 7 4 5 6 8 9

A C10 3

R

R

B

E

D

B

D E

Triangles in active list Vertex hierarchy

Primer drevesa verteksov

1 2 7 4 5 6 8 9

A B C10

D

3

E

R

R

Triangles in active list Vertex hierarchy

Drevo verteksov

At runtime, folds and unfolds create a cut or boundary
across the vertex tree:

This part of the model
is represented at high detail

This part in low detail

View-Dependent Simplification

Any run-time criterion for folding and unfolding nodes may
be used

Examples of view-dependent simplification criteria:

 Screenspace error threshold

 Silhouette preservation

 Triangle budget simplification

 Gaze-directed perceptual simplification

Screenspace Error Threshold

Nodes chosen by projected area

 User sets screenspace size threshold

 Nodes which grow larger than threshold are unfolded

Ohranjevanje silhuet

Retain more detail near silhouettes

 A silhouette node supports triangles on the visual
contour

 Use tighter screenspace thresholds when examining
silhouette nodes

Progressive Meshes

We get more than just final approximation

 sequence of contractions

 corresponding intermediate approximations

Re-encode as progressive mesh (PM)

 take final approximation to be base mesh

 reverse of contraction sequence is split sequence

 can reconstruct any intermediate model

 allow for progressive transmission & compression

PM’s a Limited Multiresolution

More flexibility is required

 local addition/subtraction of triangles

▪ as conditions change, make small updates in
LOD

▪ this is the multi-triangulation framework

▪ may require novel approximations

Must encode dependency of contractions

 PM’s imply dependency on earlier contractions

 but we can reorder non-overlapping contractions

Triangle Budget Simplification

Minimize error within specified number of triangles

 Sort nodes by screenspace error

 Unfold node with greatest error, putting children into
sorted list

Repeat until budget is reached

Algorithm partitions into two tasks:

Run them in parallel

Simplify

Task

Render

Task

Active Triangle List

…

Asinhrona poenostavitev

Vertex Tree

Časovna koherenca

Exploit the fact that frame-to-frame changes are small

Three examples:

 Active triangle list

 Vertex tree

 Budget-based simplification

Izkoriščanje časovne koherence

Active triangle list

 Could calculate active triangles every frame

 But…few triangles are added or deleted
each frame

 Idea: make only incremental changes to an active
triangle list

▪ Simple approach: doubly-linked list of triangles

▪ Better: maintain coherent arrays with swapping

Unfolded
Nodes

Boundary Nodes

Izkoriščanje časovne koherence

Vertex Tree

 Few nodes change per frame

 Don’t traverse whole tree

 Do local updates only
at boundary nodes

Optimizacija za upodabljanje

Idea: maintain geometry in coherent arrays

Active triangles Inactive triangles

Unfolded nodes Inactive nodesBoundary nodes

Optimizacija za upodabljanje

Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:

Optimizacija za upodabljanje

Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizacija za upodabljanje

Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizacija za upodabljanje

Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizacija za upodabljanje

Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Move Unfolded/Boundary Marker

Optimizacija za upodabljanje

Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizacija za upodabljanje

Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizacija za upodabljanje

Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizacija za upodabljanje

Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizacija za upodabljanje

Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G K L J H I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizacija za upodabljanje

Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G K L J H I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizacija za upodabljanje : polja verteksov

Biggest win: vertex arrays

 Actually, keep separate parallel arrays for rendering data
(coords, colors, etc)

Unfolded nodes Inactive nodesBoundary nodes

Vertex array!

Povzetek: VDS Cons

Increases CPU, memory overhead

Hard to map efficiently onto GPU for efficient utilization

Be aware of mesh foldovers

10

54

6

1

3

7

2

8

9

10

54

6

1

3

2

9
A

7

Povzetek: VDS Cons

Be aware of mesh foldovers:

8

Povzetek: VDS Cons

Be aware of mesh foldovers:

10

54

6
3

2

8

9
A

Povzetek: VDS Cons

Be aware of mesh foldovers:

 These can be very distracting artifacts

 Can prevent them at run-time

▪ Add a normal-flipping test to fold criterion

▪ Use a clever numbering scheme proposed by El-
Sana and Varshney

View-Dependent Versus Discrete LOD

View-dependent LOD is superior to traditional discrete LOD
when:

 Models contain very large individual objects (e.g.,
terrains)

 Simplification must be completely automatic (e.g.,
complex CAD models)

 Experimenting with view-dependent simplification criteria

View-Dependent Versus Discrete LOD

Discrete LOD is often the better choice:

 Simplest programming model

 Reduced run-time CPU load

 Easier to leverage hardware:

▪ Compile LODs into vertex arrays/display lists

▪ Stripe LODs into triangle strips

▪ Optimize vertex cache utilization and such

View-Dependent Versus Discrete LOD

Applications that may want to use:

 Discrete LOD

▪ Video games (but much more on this later…)

▪ Simulators

▪ Many walkthrough-style demos

 Dynamic and view-dependent LOD

▪ CAD design review tools

▪ Medical & scientific visualization toolkits

▪ Terrain flyovers (much more later…)

Continuous LOD: The Sweet Spot?

Continuous LOD may be the right compromise on modern
PC hardware

 Benefits of fine granularity without the cost of view-
dependent evaluation

 Can be implemented efficiently with regard to

▪ Memory

▪ CPU

▪ GPU

Merjenje napake

Most LOD algorithms measure error geometrically

 What is the distance between the original and simplified
surface?

 What is the volume between the surfaces?

 Etc

Really this is just an approximation to the actual visual
error, which includes:

 Color, normal, & texture distortion

 Importance of silhouettes, background illumination,
semantic importance, etc etc etc

Merjenje geometrične napake

Hausdorff distance

Average distance

Surface-surface vs
vertex-surface vs
vertex-plane vs
vertex-vertex

Quadric error metrics: vertex-plane measure that works well
in practice

Cena krčenja

Used to rank edges during simplification

 reflects amount of geometric error introduced

 main differentiating feature among algorithms

Must address two interrelated problems

 what is the best contraction to perform?

 what is the best position v’ for remaining vertex?

▪ can just choose one of the endpoints

▪ but can often do better by optimizing position of v’

Cena krčenja

Simple heuristics
 edge length, dihedral angle, surrounding area, …

Sample distances to original surface
 projection to closest point [Hoppe]

 restricted projection [Soucy–Laurendeau, Klein et al, Ciampalini et al]

Alternative characterization of error
 quadric error metrics [Garland–Heckbert]

 local volume preservation [Lindstrom–Turk]

Measuring Error with Planes

Each vertex has a (conceptual) set of
planes

 Error ≡ sum of squared distances to
planes in set

Initialize with planes of incident faces

 Consequently, all initial errors are 0

When contracting pair, use plane set
union

 planes(v’) = planes(v1) ∪ planes(v2)

TError() ()i i
i

d 2= +∑v n v

A Simple Example: Contraction & “Planes” in 2D

Lines defined by neighboring segments

 Determine position of new vertex

 Accumulate lines for ever larger areas

OriginalOriginal After 1 StepAfter 1 Step

vv11 vv22 v’v’

Measuring Error with Planes

Why base error on planes?

 Faster, but less accurate, than distance-to-face

 Simple linear system for minimum-error
position

 Efficient implicit form; no sets required

 Drawback: unlike surface, planes are infinite

Related error metrics

 Ronfard & Rossignac — max vs. sum

 Lindstrom & Turk — similar form; volume-based

The Quadric Error Metric

Given a plane, we can define a quadric Q

measuring squared distance to the plane as

[] []()
a ab ac x x

Q x y z ab b bc y ad bd cd y d

ac bc c z z

2

2 2

2

     
     = + 2 +     
         

v

T T()Q c= + 2 +v v Av b v

T(, ,) (, ,)Q c d d 2= =A b n n n

The Quadric Error Metric

Sum of quadrics represents set of planes

Each vertex has an associated quadric

 Error(vi) = Qi (vi)

 Sum quadrics when contracting (vi, vj) → v’

 Cost of contraction is Q(v’)

T() () ()i i i i
i i i

d Q Q2  + = =  ÷ 
∑ ∑ ∑n v v v

(, ,)i j i j i j i jQ Q Q c c= + = + + +A A b b

The Quadric Error Metric

Sum of endpoint quadrics determines v’

 Fixed placement: select v1 or v2

 Optimal placement: choose v’ minimizing Q(v’)

 Fixed placement is faster but lower quality

 But it also gives smaller progressive meshes

 Fallback to fixed placement if A is non-invertible

(')Q −1′∇ = 0 ⇒ = −v v A b

Visualizing Quadrics in 3-D

Quadric isosurfaces

 Are ellipsoids
(maybe
degenerate)

 Centered around
vertices

 Characterize
shape

 Stretch in least-
curved directions

Sample Model: Dental Mold

424,376 faces424,376 faces 60,000 faces60,000 faces

50 sec50 sec

Sample Model: Dental Mold

424,376 faces424,376 faces 8000 faces8000 faces

55 sec55 sec

Sample Model: Dental Mold

424,376 faces424,376 faces 1000 faces1000 faces

56 sec56 sec

Must Also Consider Attributes

Mesh for solutionMesh for solution Radiosity solutionRadiosity solution

Must Also Consider Attributes

50,761 faces50,761 faces 10,000 faces10,000 faces

Simplification Summary

Spectrum of effective methods developed
 high quality; very slow [Hoppe et al, Hoppe]

 good quality; varying speed
[Schroeder et al; Klein et al; Ciampalini et al; Guéziec
Garland-Heckbert; Ronfard-Rossignac; Lindstrom-Turk]

 lower quality; very fast [Rossignac–Borrel; Low–Tan]

 result usually produced by transforming original

Various other differentiating factors
 is topology simplified? restricted to manifolds?
 attributes simplified or re-sampled into maps?

Applications Beyond Display

Other important applications are appearing

 surface editing

 surface morphing

 multiresolution radiosity

 Still others seem promising

 hierarchical bounding volumes

 object matching

 shape analysis / feature extraction

Multiresolution Model Summary

Representations are available to support

 progressive transmission

 view-dependent refinement

 hierarchical computation (e.g., radiosity)

But limitations remain

 vertex hierarchies may over-constrain adaptation

 adaptation overhead not suitable for all cases

 interacting multiresolution objects ignored

	Nivoji podrobnosti Level of Detail (LOD)
	Problem s podrobnostmi
	LOD in interaktivnost
	Omejitve vida
	Visual Perception Software
	Slide 6
	Slide 7
	Modeliranje omejitev vida
	Faktorji CSF
	Faktorji CSF (nadaljevanje)
	LOD: osnovna zamisel
	Tvorba LOD za predmete
	LOD: Vprašanja
	Oddaljeni predmeti - bolj grob nivo podrobnosti
	LOD in oddaljenost
	Velikost in LOD
	Ekscentričnost in LOD
	Hitrost in LOD
	Globina polja in LOD
	Povzetek
	Statična resolucija ne zadošča
	Potrebujemo večresolucijske modele(Multiresolution Models)
	Zgradba LOD
	Discrete Multiresolution Models
	Tradicionalni pristop: Diskretni nivo podrobnosti
	Diskretni LOD:Prednosti
	Diskretni LOD:Slabosti
	Poenostavljanje: problem velikih objektov
	Poenostavljanje: problem majhnih objektov
	Limits of Discrete Models
	Poenostavljanje
	Choosing LODs:LOD Run-Time Management
	Choosing LODs
	Implementacija preklapljanja LOD
	Slide 35
	Implementacija mehkega prehoda LOD
	Primerjava preklapljanja in prehoda
	Mehki prehod
	Slide 39
	Choosing LODs Maintaining constant frame rate
	Choosing LODs: Maintaining constant frame rate
	Slide 42
	Slide 43
	Zvezni nivo podrobnosti
	Zvezni LOD:prednosti
	Slide 46
	View-Dependent LOD: Primeri
	Slide 48
	View-Dependent LOD:Primeri
	View-Dependent LOD:primeri
	View-Dependent LOD:Prednosti
	Streaming over the Web
	Hierarhični LOD
	Slide 54
	Izbira LODs: Upravljanje LOD v realnem času
	Izbira LOD
	Slide 57
	Izbira LOD: vzdrževanje konstantnega števila slik (frame rate)
	Avtomatska poenostavitev ploskev
	Slide 60
	Fokus na poligonskih modelih
	Druga področja
	Pregled metod poenostavljanja
	Združevanje verteksov
	Zmanjševanje števila verteksov
	Iterativno krčenje robov
	Krčenje robov
	Algoritem rušenja robov
	Slide 71
	Slide 72
	Prednosti rušenja robov
	Ohranjevanje mej
	Preprečevanje inverzije mreže
	Krčenje parov verteksov
	Rušenje robov : združevanje parov verteksov
	View-Dependent LOD: Algoritmi
	Pregled: Algoritem VDS
	Vertex Hierarchies
	Podatkovne strukture
	Vertex Hierarchies for View-Dependent Refinement
	Hierarhija verteksov
	Drevo verteksov: Zapiranje in odpiranje
	Primer drevesa verteksov
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Drevo verteksov
	View-Dependent Simplification
	Screenspace Error Threshold
	Ohranjevanje silhuet
	Progressive Meshes
	PM’s a Limited Multiresolution
	Triangle Budget Simplification
	Asinhrona poenostavitev
	Časovna koherenca
	Izkoriščanje časovne koherence
	Slide 111
	Optimizacija za upodabljanje
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Optimizacija za upodabljanje : polja verteksov
	Povzetek: VDS Cons
	Slide 131
	Slide 132
	Slide 133
	View-Dependent Versus Discrete LOD
	Slide 135
	Slide 136
	Continuous LOD: The Sweet Spot?
	Merjenje napake
	Merjenje geometrične napake
	Cena krčenja
	Slide 141
	Measuring Error with Planes
	A Simple Example: Contraction & “Planes” in 2D
	Slide 144
	The Quadric Error Metric
	The Quadric Error Metric
	Slide 147
	Visualizing Quadrics in 3-D
	Sample Model: Dental Mold
	Slide 150
	Slide 151
	Must Also Consider Attributes
	Slide 153
	Simplification Summary
	Applications Beyond Display
	Multiresolution Model Summary

